[codeforces274b]Zero Tree(树形dp)
题意:给出一棵树,每个点有权值,每次操作可以对一个联通子集中的点全部加1,或者全部减1,且每次操作必须包含点1,问最少通过多少次操作可以让整棵树每个点的权值变为0.
解题关键:自底向上dp,记录up,down两个数组 代表u被加的次数和减的次数,以1为根,则
$up[u] = \max (up[v])$
$down[u] = \max (down[v])$
而子树确定,该节点改变的次数也就确定了。从而推出该点的up和down的影响,至于为什么取max,因为左右子树可以互相影响,只要包含根节点即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=1e6+;
const int inf=0x3f3f3f3f;
int head[maxn],tot,n,m,sum;
ll cnt[maxn];
ll up[maxn],down[maxn];
struct edge{
int to;
int nxt;
int w;
}e[maxn<<];
void add_edge(int u,int v){
e[tot].to=v;
e[tot].nxt=head[u];
head[u]=tot++;
} void dfs1(int u,int fa){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==fa) continue;
dfs1(v,u);
up[u]=max(up[u],up[v]);
down[u]=max(down[u],down[v]);
}
cnt[u]+=up[u]-down[u];
if(cnt[u]>) down[u]+=cnt[u];
else up[u]-=cnt[u];
}
inline int read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
int x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
} int main(){
int k=;
while(scanf("%d",&n)!=EOF){
memset(head,-,sizeof head);
tot=;
int a,b;
for(int i=;i<n-;i++){
a=read();
b=read();
add_edge(a,b);
add_edge(b,a);
}
for(int i=;i<=n;i++) scanf("%lld",&cnt[i]);
dfs1(,-);
printf("%lld\n",up[]+down[]);
}
return ;
}
[codeforces274b]Zero Tree(树形dp)的更多相关文章
- 熟练剖分(tree) 树形DP
熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...
- hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)
题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: ...
- CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
- hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。
/** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...
- 5.10 省选模拟赛 tree 树形dp 逆元
LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...
- Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】
题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...
- codeforces Round #263(div2) D. Appleman and Tree 树形dp
题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...
- POJ 2486 Apple Tree(树形DP)
题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...
随机推荐
- SERVICE_STATUS结构各成员解析
在编写Windows服务的时候,需要调用API函数::SetServiceStatus()向服务控制管理器(SCM)提交更新当前服务的状态信息,其第2个参数为指向SERVICE_STATUS结构的指针 ...
- mysql 查看触发器,删除触发器
1. 查看所有触发器 2. 根据触发器名称看下相关触发器信息 3. 查看所有触发器 另一种查询触发器命令: show triggers; 删除触发器命令: drop trigger trigg ...
- Runnable 和 Callable的区别
Runnable 与 Callable的区别: (1)Callable规定的方法是call(),Runnable规定的方法是run(). (2)Callable的任务执行后可返回值,而Runnable ...
- 九度OJ 1174:查找第K小数 (排序、查找)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6376 解决:2539 题目描述: 查找一个数组的第K小的数,注意同样大小算一样大. 如 2 1 3 4 5 2 第三小数为3. 输入: ...
- iOS 设置字体样式
1.iOS设置字体样式 label.font = [UIFont fontWithName:@"Arial-BoldItalicMT" size:24]; 字体名如下: F ...
- lambda map filter 用法
lambda 可以这样认为,lambda作为一个表达式 非常容易理解,在这里lambda简化了函数定义的书写形式.是代码更为简洁,但是使用函数的定义方式更为直观,易理解. #定义函数:普通方式 def ...
- MLGBZ
April cloudy, boss rainy, told me he want to kick But coming so,Formosa Heart sad , Down,down,down W ...
- 【zabbix】Windows服务器获取IIS站点以及程序池状态
在使用zabbix做Windows服务器监控的时候遇到一个比较棘手的问题,检测IIS站点状态. 普通情况下,只要用浏览器访问iis站点测试一下返回码是不是200即可判断状态,但是我这次遇到的是iis使 ...
- 开发的第一个PHP扩展
下载php源码php-5.4.23.tar.gz,解压,进入/home/hubo/php-5.4.23/ext/扩展目录 wget http://cn2.php.net/get/php-5.4.23. ...
- 51Nod 1158 全是1的最大子矩阵 —— 预处理 + 暴力枚举 or 单调栈
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1158 1158 全是1的最大子矩阵 基准时间限制:1 秒 空 ...