题目:https://loj.ac/problem/6089

直接多重背包,加上分剩余类的前缀和还是n^2的。

但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品。

所以体积<=sqrt(n)的物品多重背包,大于sqrt(n)的就变成最小值是sqrt(n)+1、最多有sqrt(n)个物品的方案数,可以用那种“整体+1 或 新增一列”的套路解决。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=1e5+,M=,mod=;
int n,m,f[][N],s[][N],g[][N],t[N],ans;
void upd(int &x){x-=(x>=mod?mod:);}
int main()
{
scanf("%d",&n); m=sqrt(n)+;
//printf("m=%d\n",m);
for(int j=;j<=n;j++) s[][j]=;
for(int i=,u=,v=;i<=m;i++,u=!u,v=!v)
for(int j=;j<=n;j++)
{
f[u][j]=s[v][j]-(j-i*(i+)>=?s[v][j-i*(i+)]:);//j-i*(i+1)!! not j-i*i-1
f[u][j]+=mod; upd(f[u][j]);
s[u][j]=f[u][j]+(j-(i+)>=?s[u][j-(i+)]:);
upd(s[u][j]);
//printf("f[%d][%d]=%d s[%d][%d]=%d\n",i,j,f[u][j],i,j,s[u][j]);
}
g[][]=; t[]=;
for(int i=,u=,v=;i<=m;i++,u=!u,v=!v)
for(int j=;j<=n;j++)
{
g[u][j]=(j-i>=?g[u][j-i]:)+(j-(m+)>=?g[v][j-(m+)]:);
upd(g[u][j]);
t[j]+=g[u][j]; upd(t[j]);
//printf("g[%d][%d]=%d t[%d]=%d\n",i,j,g[u][j],j,t[j]);
}
int d=(m&);
for(int j=;j<=n;j++)
ans+=(ll)f[d][j]*t[n-j]%mod,upd(ans);
printf("%d\n",ans);
return ;
}

loj 6089 小 Y 的背包计数问题——分类进行的背包的更多相关文章

  1. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  2. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  3. LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP

    题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...

  4. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  7. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  8. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  9. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

随机推荐

  1. mysql忘记password

    有时候突然忘记MySQL的password会真的不爽,这里介绍一种MySQLpassword忘记时重置password的方法,操作系统win8,MySql version:5.6.10 1 在任务管理 ...

  2. Java系统中如何拆分同步和异步

    很多开发人员说,将应用程序切换到异步处理很复杂.因为他们有一个天然需要同步通信的Web应用程序.在这篇文章中,我想介绍一种方法来达到异步通信的目的:使用一些众所周知的库和工具来设计他们的系统. 下面的 ...

  3. 底部TabsFooter

    Demo简单描述:点击底部菜单可切换页面,并且底部为共用. 这个是在设置好导航Navigator之后进行的步骤,只是我个人进行Tab切换的一种思路方法,或许不是最好的,仅供参考一下. 首先我们需要一个 ...

  4. C语言高速入门系列(四)

    C语言高速入门系列(四) C语言数组 ---------转载请注明出处:coder-pig 贴心小提示:假设图看不清晰可右键另存为,应该就非常清晰了; 注意上面的代码都要自己过一遍哦! 本节引言: 经 ...

  5. JQuery的一些思想,自己的一些见解!!!!

    自己总结了一下JQuery底层的一些思想,纯属于个人见解.. 为了方便描述,现在客户假如给了我们一个需求: 页面上有两个按钮,一张图片,当我点击hidden按钮时隐藏图片,当我点击show按钮时显示图 ...

  6. js 检测客户端网速

    <!doctype html> <html> <head> <meta http-equiv=Content-Type content="text/ ...

  7. Project Euler:Problem 41 Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  8. hive job oom问题

    错误信息例如以下:Container [pid=26845,containerID=container_1419056923480_0212_02_000001] is running beyond ...

  9. struts2 eclipse集成jdk与tomcat (2)

    Eclipse 中集成jdk与tomcat 1. 首次打开Eclipse为让你选择工作空间,选择合适即可. 添加JDK (1) 在Eclipse的菜单中选择window选项,单击 perference ...

  10. 链接数据库代码封装DBDA

    <?php class DBDA { public $host = "localhost"; //服务器地址 public $uid = "root"; ...