20%的数据直接暴搜就行,接下来我们考虑哪些数不能够出现在同一个集合中,就连一 条边,我们会发现前

math(2018.10.27)的更多相关文章

  1. 2018.10.27 bzoj1984: 月下“毛景树”(树链剖分)

    传送门 唉蒟蒻又退化了,这道sb题居然做了20min,最后发现是updcovupdcovupdcov写成了updaddupdaddupdadd我还能说什么233233233 就是让你转边权为点权之后, ...

  2. 2018.10.27 codeforces402D. Upgrading Array(数论+贪心)

    传送门 唉我觉得这题数据范围1e5都能做啊... 居然只出了2000 考完听zxyzxyzxy说我的贪心可以卡但过了? 可能今天本来是0+10+00+10+00+10+0只是运气好T1T1T1骗了10 ...

  3. 2018.10.27 bzoj3209: 花神的数论题(数位dp)

    传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...

  4. 2018.10.27 洛谷P2915奶牛混合起来Mixed Up Cows(状压dp)

    传送门 状压dp入门题. 按照题意建一个图. 要求的就是合法的链的总数. 直接f[i][j]f[i][j]f[i][j]表示当前状态为jjj,下一位要跟iii连起来的方案数. 然后从没被选并且跟iii ...

  5. 2018.10.27 loj#2292. 「THUSC 2016」成绩单(区间dp)

    传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j] ...

  6. 2018.10.27 loj#6035. 「雅礼集训 2017 Day4」洗衣服(贪心+堆)

    传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb ...

  7. POI 2018.10.27

    [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进 ...

  8. physics(2018.10.27)

    这道题可以推出\(O(1)\)的算法,但是实际上暴力模拟就可以过了. 代码(暴力模拟): #include<cstdio> #include<algorithm> #inclu ...

  9. 【2018.10.27】CXM笔记

    一个数大约有 $O(\sqrt(n)/log^2(n))$ 个约数. 1. 一个棋盘,每个格子最开始都是白的.可以按一个格子,它马跳(日字跳)能到达的 $8$ 个格子反色(当前格不反色).问有多少种方 ...

随机推荐

  1. FireMonkey下的WndProc实现

    unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Types, System.UI ...

  2. ubuntu 12.04 解压安装jdk

    ubuntu下解压安装jdk,简单方便.分享一下安装方法: 注:该方法针对新系统,之前没有配置过jdk的情况. 1.下载相应版本号的jdk压缩包.如 jdk-8u5-linux-x64.gz 2.解压 ...

  3. Debug 和 Release 的区别

    Debug 和 Release 的区别         Debug 通常称为调试版本,它包含调试信息,并且不作任何优化,便于程序员调试程序.Release 称为发布版本,它往往是进行了各种优化,使得程 ...

  4. OC浅析一

    Objective-C是一门简单的语言,95%是C.只是在语言层面上加了些关键字和语法.真正让Objective-C如此强大的是它的运行时.它很小但却很强大.它的核心是消息分发. 在Objective ...

  5. 驱动框架入门——以LED为例[【转】

    本文转载自;http://blog.csdn.net/oqqHuTu12345678/article/details/72783903 以下内容源于朱有鹏<物联网大讲堂>课程的学习,如有侵 ...

  6. Gym - 101147H H. Commandos —— DP

    题目链接:http://codeforces.com/gym/101147/problem/H 题解: 单纯的三维DP.可用递推或记忆化搜索实现. 学习:开始时用记忆化搜索写,dp[]初始化为0,结果 ...

  7. Jenkins安装部署及tomcat的入门介绍

    这里我们使用的方法是用servlet容器来部署jenkins,使用的是tomcat 下载下来tomcat,解压 bin目录下存放的一些启动关闭批处理文件 conf目录下放的一些配置文件,配置虚拟主机之 ...

  8. Java深度理解——Java字节代码的操纵

    导读:Java作为业界应用最为广泛的语言之一,深得众多软件厂商和开发者的推崇,更是被包括Oracle在内的众多JCP成员积极地推动发展.但是对于 Java语言的深度理解和运用,毕竟是很少会有人涉及的话 ...

  9. laravel基础课程---2、Laravel配置文件、路由及php artisan(php artisan是什么)

    laravel基础课程---2.Laravel配置文件.路由及php artisan(php artisan是什么) 一.总结 一句话总结: PHP工具匠:php artisan,其实本身就是一些PH ...

  10. Spring 事务管理高级应用难点剖析: 第 1 部分

    Spring 的事务管理是被使用得最多的功能之一,虽然 Spring 事务管理已经帮助程序员将要做的事情减到了最小.但在实际开发中,如果使用不当,依然会造成数据连接泄漏等问题.本系列以实际应用中所碰到 ...