backpropagation算法示例

下面举个例子,假设在某个mini-batch的有样本X和标签Y,其中\(X\in R^{m\times 2}, Y\in R^{m\times 1}\),现在有个两层的网络,对应的计算如下:
\[
\begin{split}
i_1 &= XW_1+ b_1\\
o_1 &= sigmoid(i_1)\\
i_2 &= o_1W_2 + b_2\\
o_2 &= sigmoid(i_2)
\end{split}
\]
其中\(W_1 \in R^{2\times 3}, b_1\in R^{1\times 3}, W_2\in R^{3\times 1}, b_2\in R^{1\times 1}\)都是参数,然后使用平方损失函数
\[
cost = \dfrac{1}{2m}\sum_i^m(o_{2i} - Y_i)^2
\]
下面给出反向传播的过程
\[
\begin{split}
\dfrac{\partial cost}{\partial o_2} &= \dfrac{1}{m}(o_2 - Y)\\
\dfrac{\partial o_2}{\partial i_2} &= sigmoid(i_2)\odot (1 - sigmoid(i_2)) = o_2 \odot (1 - o_2)\\
\dfrac{\partial i_2}{\partial W_2} &= o_1\\
\dfrac{\partial i_2}{\partial o_2} &= w_2\\
\dfrac{\partial i_2}{\partial b_2} &= 1\\
\dfrac{\partial o_1}{\partial i_1} &= sigmoid(i_1)\odot (1 - sigmoid(i_1)) = o_1\odot (1 - o_1)\\
\dfrac{\partial i_1}{\partial W_1} &= X\\
\dfrac{\partial i_1}{\partial b_1} &= 1
\end{split}
\]
所以有

\[
\begin{split}
\Delta W_2 &= \dfrac{\partial cost}{\partial o_2}\dfrac{\partial o_2}{\partial i_2}\dfrac{\partial i_2}{\partial W_2}\\
\Delta b_2 &= \dfrac{\partial cost}{\partial o_2}\dfrac{\partial o_2}{\partial i_2}\dfrac{\partial i_2}{\partial b_2}\\
\Delta W_1 &= \dfrac{\partial cost}{\partial o_2}\dfrac{\partial o_2}{\partial i_2}\dfrac{\partial i_2}{\partial o_1}\dfrac{\partial o_1}{\partial i_1}\dfrac{\partial i_1}{\partial W_1}\\
\Delta b_1 &= \dfrac{\partial cost}{\partial o_2}\dfrac{\partial o_2}{\partial i_2}\dfrac{\partial i_2}{\partial o_1}\dfrac{\partial o_1}{\partial i_1}\dfrac{\partial i_1}{\partial b_1}
\end{split}
\]
根据上述的链式法则,有
\[
\begin{split}
\Delta W_2 &= \left((\dfrac{1}{m}(o_2 - Y)\odot(o_2\odot (1 - o_2)))^T\times o_1\right)^T\\
\Delta W_1 &= \left((((\dfrac{1}{m}(o_2 - Y)\odot (o_2\odot (1 - o_2)))\times W_2^T)\odot o_1\odot (1 - o_1))^T\times X\right)^T
\end{split}
\]

backpropagation算法示例的更多相关文章

  1. 神经网络与深度学习(3):Backpropagation算法

    本文总结自<Neural Networks and Deep Learning>第2章的部分内容. Backpropagation算法 Backpropagation核心解决的问题: ∂C ...

  2. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  3. Python实现的寻找前5个默尼森数算法示例

    Python实现的寻找前5个默尼森数算法示例 本文实例讲述了Python实现的寻找前5个默尼森数算法.分享给大家供大家参考,具体如下: 找前5个默尼森数. 若P是素数且M也是素数,并且满足等式M=2* ...

  4. Backpropagation 算法的推导与直观图解

    摘要 本文是对 Andrew Ng 在 Coursera 上的机器学习课程中 Backpropagation Algorithm 一小节的延伸.文章分三个部分:第一部分给出一个简单的神经网络模型和 B ...

  5. JavaScript实现获取两个排序数组的中位数算法示例

    本文实例讲述了JavaScript排序代码实现获取两个排序数组的中位数算法.分享给大家供大家参考,具体如下: 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个 ...

  6. TensorFlow简要教程及线性回归算法示例

    TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...

  7. 一种简单高效的音频降噪算法示例(附完整C代码)

    近期比较忙, 抽空出来5.1开源献礼. 但凡学习音频降噪算法的朋友,肯定看过一个算法. <<语音增强-理论与实践>> 中提及到基于对数的最小均方误差的降噪算法,也就是LogMM ...

  8. pcl曲面重建模块-poisson重建算法示例

    poisson曲面重建算法 pcl-1.8测试通过 #include <iostream> #include <pcl/common/common.h> #include &l ...

  9. 用PHP实现URL转换短网址的算法示例

    短网址就是把一个长的地址转换在超级短的网址,然后访问短网址即可跳转到长网址了,下面来看用PHP实现URL转换短网址的算法与例子. 短网址(Short URL) ,顾名思义就是在形式上比较短的网址.在W ...

随机推荐

  1. LNA与PA

    LNA是低噪声放大器,主要用于接收电路设计中.因为接收电路中的信噪比通常是很低的,往往信号远小于噪声,通过放大器的时候,信号和噪声一起被放大的话非常不利于后续处理,这就要求放大器能够抑制噪声.PA(功 ...

  2. 腾讯云服务器CVM购买详细过程 选择我们需要的腾讯云服务器

    腾讯云服务商有云服务器.云数据库.CDN.云存储等产品,其中较多的用户会选择腾讯云服务器,因为用途比较广泛,比如用来软件的运行以及网站建设,如今一般都是用云服务器,而不是用虚拟主机,毕竟虚拟主机的性价 ...

  3. ubuntu16.4 配置logstash6.3.2 kibanan6.3.2

    1. 官网下载 https://artifacts.elastic.co/downloads/logstash/logstash-6.3.2.tar.gz https://www.elastic.co ...

  4. 新建snmp模型总结

    1.在DeviceType.xml中添加新的模块 2.在modellidx.json中添加路径关联 3.添加定义模型 4.定义model.xml注意: 5.定义collect.xml注意:

  5. win8.1和wp8.1共用代码,需要注意的一些问题

    最近写了一个应有,使用了mvvmlight,把viewmodel.model.common之类的代码都放到了shared共享,写下来才发现,有不少问题是自已下手之前没注意到的,有些地方实在没法中途改了 ...

  6. hdu-3790 最短路径问题---dijkstra两重权值

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意: 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到 ...

  7. python_67_生成器3

    import time def consumer(name): print("%s 准备吃包子啦!"%name) while True: baozi = yield print(& ...

  8. Drupal7强制把主题恢复到默认主题

    今天在写Theme,退出登陆的时候无法进入管理后台. 万不得已之下只有使用数据库进行恢复. Rest Drupal Theme to Bartik SQL语句如下: WHERE type = 'the ...

  9. grep与正则表达式使用

    grep简介 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.通常grep有三种版本grep.egrep(等同于grep -E)和fgrep.egrep为扩展的g ...

  10. 五 python并发编程之IO模型

    一 IO模型介绍 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问 ...