题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2115

sol  :首先考虑处理出DFS树,那么树上的所有非树边可以构成一个简单环

   因为所有不在1-n的路径上的树边都会被走过去再走回来,对答案无法构成影响

   所以答案即为1-n路径的异或和^(所有环的异或和任选)的最大值

   那么问题转化为从k个数中任选使其异或一个特定的数得异或和最大

   直接跑线性基即可

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
const int Mx=;
int n,m,cnt,ans,now,tmp,val[Mx],cir[Mx],vis[Mx];
int tot,head[Mx],nxt[Mx],ver[Mx],cost[Mx];
void add(int x,int y,int z)
{
nxt[++tot]=head[x];
ver[tot]=y;
cost[tot]=z;
head[x]=tot;
}
void dfs(int x)
{
vis[x]=;
for(int i=head[x];i;i=nxt[i])
{
int y=ver[i];
if(!vis[y])
val[y]=val[x]^cost[i],dfs(y);
else
cir[++cnt]=val[x]^val[y]^cost[i];
}
}
void gauss()
{
now=,m=;
while(m--)
{
tmp=; for(int j=now;j<=cnt;j++) if((cir[j]>>m)&) { tmp=j;break; }
if(tmp)
{
swap(cir[tmp],cir[now]);
for(int j=;j<=cnt;j++) if(j!=now&&((cir[j]>>m)&)) cir[j]^=cir[now];
now++;
}
}
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(int i=,x,y,z;i<=m;i++)
{
scanf("%lld%lld%lld",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
dfs(); gauss(); ans=val[n];
for(int i=;i<now;i++) ans=max(ans,ans^cir[i]);
cout<<ans<<endl;
return ;
}

bzoj2115【WC2011】XOR的更多相关文章

  1. 【bzoj2115】【wc2011】Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5380  Solved: 2249[Submit][Status ...

  2. bzoj2115【WC2001】Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2059  Solved: 856 [Submit][Statu ...

  3. BZOJ 2115 【Wc2011】 Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  4. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  5. 【HDU3949】XOR

    [题目大意] 给定一个数组,求这些数组通过异或能得到的数中的第k小是多少. 传送门:http://vjudge.net/problem/HDU-3949 [题解] 首先高斯消元求出线性基,然后将k按照 ...

  6. 【整理】XOR:从陌生到头晕

    一:解决XOR常用的方法: 在vjudge上面输入关键词xor,然后按照顺序刷了一些题. 然后大概悟出了一些的的套路: 常用的有贪心,主要是利用二进制的一些性质,即贪心最大值的尽量高位取1. 然后有前 ...

  7. 【CF242E】Xor Segment

    题目大意:给定一个长度为 N 的序列,支持两种询问,即:区间异或,区间求和. 题解:加深了对线段树的理解. 对于线段树维护的变量一定是易于 modify 的,对于查询的答案只需用维护的东西进行组合而成 ...

  8. 【ATcoder】Xor Sum 2

    题目大意:给定一个 N 个点的序列,求有多少个区间满足\(\oplus_{i=l}^ra[i]=\sum\limits_{i=l}^ra[i]\). 题解: 小结论:\(a\oplus b=a+b\r ...

  9. 【agc016D】XOR Replace

    Portal --> agc016D Description ​ 一个序列,一次操作将某个位置变成整个序列的异或和,现在给定一个目标序列,问最少几步可以得到目标序列 ​ Solution ​ 翀 ...

随机推荐

  1. 访问虚拟机中web服务的

    经常发现假如我们想弄一点小玩意或跑一些小demo,总是要不断的在自己的工作本本上搭建不同的运行环境,久而久之,本本上充斥着各种软件,速度下降了,同时管理也非常的不方便.于是想到用虚拟机来搭建运行环境, ...

  2. javascript同步和异步的区别与实现方式

    javascript语言是单线程机制.所谓单线程就是按次序执行,执行完一个任务再执行下一个. 对于浏览器来说,也就是无法在渲染页面的同时执行代码. 单线程机制的优点在于实现起来较为简单,运行环境相对简 ...

  3. Excel自动从身份证中提取生日、性别、年龄

    现在学生的身份证号已经全部都是18位的新一代身份证了,里面的数字都是有规律的.前6位数字是户籍所在地的代码,7-14位就是出生日期.第17位“2”代表的是性别,偶数为女性,奇数为男性.我们要做的就是把 ...

  4. Jquery中的CheckBox、RadioButton、DropDownList的取值赋值实现代码

    随着Jquery的作用越来越大,使用的朋友也越来越多.在Web中,由于CheckBox. Radiobutton . DropDownList等控件使用的频率比较高,就关系到这些控件在Jquery中的 ...

  5. Websocket教程SpringBoot+Maven整合

    1.大话websocket及课程介绍 简介: websocket介绍.使用场景分享.学习课程需要什么基础 2.课程技术选型和浏览器兼容讲解 简介: 简单介绍什么是springboot.socketjs ...

  6. Mybatis自查询递归查找子

    先看一下数据库 主键id,名称product_code,父parent,和kind 设计菜单类 setter,getter Dao public interface ProductMapper { L ...

  7. SummerVocation_Learning--java的线程同步

    public class Test_XCTB implements Runnable{ Timer timer = new Timer(); public static void main(Strin ...

  8. tomcat修改默认主页, 前段项目放到tomcat下,浏览器输入ip加端口后,直接到项目主页

    1,将 项目 放到 tomcat 的webapps 文件夹下 2, 修改conf 下的 server.xml , 找到 <Host name="localhost" appB ...

  9. ubuntu16.04更换镜像源

    1.备份原有 cp /etc/apt/sources.list /etc/apt/sources.list.old 2.打开阿里巴巴镜像源:  https://opsx.alibaba.com/mir ...

  10. php订单号的生成

    来自ECSHOP订单号生成函数:/includes/lib_order.php文件中的get_order_sn() /** * 得到新订单号 * @return string */ function ...