bzoj2115【WC2011】XOR
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2115
sol :首先考虑处理出DFS树,那么树上的所有非树边可以构成一个简单环
因为所有不在1-n的路径上的树边都会被走过去再走回来,对答案无法构成影响
所以答案即为1-n路径的异或和^(所有环的异或和任选)的最大值
那么问题转化为从k个数中任选使其异或一个特定的数得异或和最大
直接跑线性基即可
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
const int Mx=;
int n,m,cnt,ans,now,tmp,val[Mx],cir[Mx],vis[Mx];
int tot,head[Mx],nxt[Mx],ver[Mx],cost[Mx];
void add(int x,int y,int z)
{
nxt[++tot]=head[x];
ver[tot]=y;
cost[tot]=z;
head[x]=tot;
}
void dfs(int x)
{
vis[x]=;
for(int i=head[x];i;i=nxt[i])
{
int y=ver[i];
if(!vis[y])
val[y]=val[x]^cost[i],dfs(y);
else
cir[++cnt]=val[x]^val[y]^cost[i];
}
}
void gauss()
{
now=,m=;
while(m--)
{
tmp=; for(int j=now;j<=cnt;j++) if((cir[j]>>m)&) { tmp=j;break; }
if(tmp)
{
swap(cir[tmp],cir[now]);
for(int j=;j<=cnt;j++) if(j!=now&&((cir[j]>>m)&)) cir[j]^=cir[now];
now++;
}
}
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(int i=,x,y,z;i<=m;i++)
{
scanf("%lld%lld%lld",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
dfs(); gauss(); ans=val[n];
for(int i=;i<now;i++) ans=max(ans,ans^cir[i]);
cout<<ans<<endl;
return ;
}
bzoj2115【WC2011】XOR的更多相关文章
- 【bzoj2115】【wc2011】Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 5380 Solved: 2249[Submit][Status ...
- bzoj2115【WC2001】Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2059 Solved: 856 [Submit][Statu ...
- BZOJ 2115 【Wc2011】 Xor
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...
- 【BZOJ2337】Xor和路径(高斯消元)
[BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...
- 【HDU3949】XOR
[题目大意] 给定一个数组,求这些数组通过异或能得到的数中的第k小是多少. 传送门:http://vjudge.net/problem/HDU-3949 [题解] 首先高斯消元求出线性基,然后将k按照 ...
- 【整理】XOR:从陌生到头晕
一:解决XOR常用的方法: 在vjudge上面输入关键词xor,然后按照顺序刷了一些题. 然后大概悟出了一些的的套路: 常用的有贪心,主要是利用二进制的一些性质,即贪心最大值的尽量高位取1. 然后有前 ...
- 【CF242E】Xor Segment
题目大意:给定一个长度为 N 的序列,支持两种询问,即:区间异或,区间求和. 题解:加深了对线段树的理解. 对于线段树维护的变量一定是易于 modify 的,对于查询的答案只需用维护的东西进行组合而成 ...
- 【ATcoder】Xor Sum 2
题目大意:给定一个 N 个点的序列,求有多少个区间满足\(\oplus_{i=l}^ra[i]=\sum\limits_{i=l}^ra[i]\). 题解: 小结论:\(a\oplus b=a+b\r ...
- 【agc016D】XOR Replace
Portal --> agc016D Description 一个序列,一次操作将某个位置变成整个序列的异或和,现在给定一个目标序列,问最少几步可以得到目标序列 Solution 翀 ...
随机推荐
- spring mvc + swagger 配置
首先,添加mvc框架(略)以及Swagger Maven依赖: <dependency> <groupId>io.springfox</groupId> <a ...
- bootstrap3 文档随看
唉 昨天看的是2,早知道就只可以看3啦,虽然整体不变,但是小改小闹的还是很多啦.产品上线是需要升级的,但是像这么改会很烦哎,有些样式名字修改,用法修改,功能修改,那让用惯了2的人还得把之前记忆清除了然 ...
- latex-word
http://blog.sina.com.cn/s/blog_565e747c0100qxma.html 附:PowerPoint 中插入LaTeX公式的插件,IguanaTex,功能和TeXsWor ...
- Bootstrap 提示工具(Tooltip)插件的事件
事件 下表列出了提示工具(Tooltip)插件中要用到的事件.这些事件可在函数中当钩子使用. 事件 描述 实例 show.bs.tooltip 当调用 show 实例方法时立即触发该事件. $('#m ...
- vue的属性监听
一.vue的监听 1.监听的例子 如: html:<input type="number" v-model="a" /> js: watch: { ...
- C/C++程序基础 (九)排序算法简述
排序算法 算法复杂度 算法简述 插入排序 N2 前方有序,依次将后方无序数据插入前方合适位置. 冒泡排序 N2 前方有序,从后方两两比较,将最小泡冒到前方. 选择排序 N2 前方有序,从后方选择最小的 ...
- HTTP 配置与编译安装
目录 HTTP 配置与编译安装 HTTP 相关配置 DSO 定义'Main' Server 的文档页面路径 定义站点主页面 站点访问控制常见机制 基于源地址实现访问控制 日志设定 设定默认字符集 定义 ...
- ubuntu16.04更换镜像源
1.备份原有 cp /etc/apt/sources.list /etc/apt/sources.list.old 2.打开阿里巴巴镜像源: https://opsx.alibaba.com/mir ...
- ASP.NET Core模块化前后端分离快速开发框架介绍之3、数据访问模块介绍
源码 GitHub:https://github.com/iamoldli/NetModular 演示地址 地址:https://nm.iamoldli.com 账户:admin 密码:admin 前 ...
- CyclicBarrier源码分析
CyclicBarrier是通过ReentrantLock(独占锁)和Condition来实现的.下面,我们分析CyclicBarrier中3个核心函数: 构造函数, await()作出分析. 1. ...