题目

请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。

输入格式

第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。

输出格式

输出N行,每行一个整数,第i行输出C[i-1]。

输入样例

5

3 1

2 4

1 1

2 4

1 4

输出样例

24

12

10

6

1

题解

和2179几乎一模一样

由于卷积的定义要求下标之和为常数,我们尝试将原式变形,发现只要将a或者b反过来存就可以了

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<complex>
#include<algorithm>
#define pi acos(-1)
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
typedef complex<double> E;
E a[maxn],b[maxn];
int n,m,L,R[maxn];
void fft(E* a,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
E wn(cos(pi / i),f * sin(pi / i));
for (int j = 0; j < n; j += (i << 1)){
E w(1,0);
for (int k = 0; k < i; k++,w *= wn){
E x = a[j + k],y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
if (f == -1) for (int i = 0; i < n; i++) a[i] /= n;
}
int main(){
n = read(); n--;
for (int i = 0; i <= n; i++){a[n - i] = read();b[i] = read();}
m = n << 1; for (n = 1; n <= m; n <<= 1) L++;
for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
fft(a,1); fft(b,1);
for (int i = 0; i <= n; i++) a[i] *= b[i];
fft(a,-1);
for (int i = (m >> 1); i >= 0; i--) printf("%d\n",(int)(a[i].real() + 0.1));
return 0;
}

BZOJ2194 快速傅立叶之二 【fft】的更多相关文章

  1. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  2. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  3. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  4. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  5. 2018.11.18 bzoj2194: 快速傅立叶之二(fft)

    传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...

  6. 【bzoj2194】快速傅立叶之二 FFT

    题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...

  7. bzoj2194: 快速傅立叶之二

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  8. bzoj千题计划256:bzoj2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...

  9. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

随机推荐

  1. 2018.2.2 JavaScript中的封装

    JavaScript中的封装 1.封装的概念 通过将一个方法或者属性声明为私用的,可以让对象的实现细节对其他对象保密以降低对象之间的耦合程度,可以保持数据的完整性并对其修改方式加以约束,这样可以使代码 ...

  2. 深入理解计算机系统_3e 第二章家庭作业 CS:APP3e chapter 2 homework

    初始完成日期:2017.9.26 许可:除2.55对应代码外(如需使用请联系 randy.bryant@cs.cmu.edu),任何人可以自由的使用,修改,分发本文档的代码. 本机环境: (有一些需要 ...

  3. angular2+ form 表单中 input输入框的disabled属性设置无效

    最近项目中遇到一个表单input设置disabled问题,直接赋值angular原生的[disabled]=“isDisabled”无效,浏览器警告信息: 无奈,只能按照控制台提示修改: 问题解决

  4. cin对象的一些常用方法使用总结

    >> 最初定义的是右移,当但是出现在 cin >>中的时候这个符号被重载了,变成了一个流操作,在用户通过键盘输入信息的时候,所有内容都会先直接存储在一个叫输入缓冲区的的地方,c ...

  5. 配置dubbo架构的maven项目

    1. 拆分工程 1)将表现层工程独立出来: e3-manager-web 2)将原来的e3-manager改为如下结构 e3-manager |--e3-manager-dao |--e3-manag ...

  6. java调用摄像头了

    http://www.cnblogs.com/cnweiblog/p/4602207.html

  7. 项目实战14.1—ELK 企业内部日志分析系统

    本文收录在Linux运维企业架构实战系列 一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSear ...

  8. nginx修改nginx.conf配置可以https访问

    修改nginx.conf,参照如下更改配置server { listen 443; server_name abc.com; // 访问域名 ssl on; root /var/www/bjubi.c ...

  9. 老男孩Python全栈第2期+课件笔记【高清完整92天整套视频教程】

    点击了解更多Python课程>>> 老男孩Python全栈第2期+课件笔记[高清完整92天整套视频教程] 课程目录 ├─day01-python 全栈开发-基础篇 │ 01 pyth ...

  10. jupyter notebook(三)——IOPub_data_rate_limit报错

    一.问题 运行jupyter notebook,然后运行python代码,读取文件处理时,会报错.发现时IO读取时错误.应该是IO速率问题. 下面是问题报错: IOPub data rate exce ...