最优配对问题(集合上的动态规划) —— 状压DP
题目来源:紫书P284
题意:
给出n个点的空间坐标(n为偶数, n<=20), 把他们配成n/2对, 问:怎样配对才能使点对的距离和最小?
题解:
设dp[s]为:状态为s(s代表着某个子集)时, 它的最小距离和。
1.对于一个状态s, 首先要计算它减少两个点后的状态的最小距离和, 然后当前状态才能从这些状态中转移过来。
2.如何转移:对于状态s, 在集合中随便找一个点,枚举集合中的其他点与它配对, 取距离和最小的那一对。
3.为什么选定一个点,然后枚举集合中的其他点就可以呢?而两个点都要枚举呢? 因为:对于选定的点, 它总得要和集合中的其他点配对, 那么答案就肯定蕴藏在某一次配对中了。而枚举两个点, 实际上是多余的。
实现:
1.递推:自底向上,从最小的子集开始计算, 然后大的子集就可以从中转移过来。缺点是点数为奇数的情况也考虑进去了(可以预先判断点数是否为偶,以决定是否需要进入 计算), 速度慢。
2.记忆化搜索:很好理解,对于状态s, 假设它的偶数子集的最小距离和都计算出来了, 那么选定某个点, 再枚举其他点就可以了。而且避免了奇数个元素的子集的计算。
递推:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int INF = 2e9;
const int maxn = 21; struct Node{
double x, y, z;
}dot[maxn]; int n;
double dp[1<<maxn+1]; double dis(Node a, Node b)
{
return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z) );
} void solve()
{
dp[0] = 0;
for(int i = 1; i<(1<<n); i++)
dp[i] = INF; for(int s = 1; s < (1 << n); s++)
{
int i;
for(i = 0; i<n; i++)
if(s&(1<<i)) break; for(int j = i+1; j<n; j++)
if(s&(1<<j))
dp[s] = min(dp[s], dis(dot[i], dot[j]) + dp[s^(1<<i)^(1<<j)]);
}
} int main()
{
cin >> n;
for(int i = 0; i < n; i++)
cin >> dot[i].x >> dot[i].y >> dot[i].z; solve();
cout << dp[(1<<n) - 1] << endl;
}
记忆化搜索:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int INF = 2e9;
const int maxn = 21; struct Node{
double x, y, z;
}dot[maxn]; int n;
double dp[1<<maxn]; double dis(Node a, Node b)
{
return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z) );
} double dfs(int s)
{
if(dp[s] != INF)
return dp[s]; int i;
for(i = 0; i<n; i++)
if(s&(1<<i)) break; for(int j = i+1; j<n; j++)
if(s&(1<<j))
dp[s] = min( dp[s], dis(dot[i], dot[j]) + dfs(s^(1<<i)^(1<<j)) ); return dp[s];
} int main()
{
cin >> n;
for(int i = 0; i < n; i++)
cin >> dot[i].x >> dot[i].y >> dot[i].z; dp[0] = 0;
for(int i = 1; i < (1<<n); i++)
dp[i] = INF; cout << dfs((1<<n) - 1) << endl;
}
最优配对问题(集合上的动态规划) —— 状压DP的更多相关文章
- 状态压缩动态规划 状压DP
总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...
- 动态规划---状压dp
状压dp,就是把动态规划之中的一个个状态用二进制表示,主要运用位运算. 这里有一道例题:蓝书P639猛兽军团1 [SCOI2005]互不侵犯 题目: 题目描述 在N×N的棋盘里面放K个国王,使他们互不 ...
- 状态压缩动态规划(状压DP)详解
0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...
- [HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...
- B - 集合选数 (状压DP)
题目链接:https://cn.vjudge.net/contest/281960#problem/B 题目大意:中文题目 具体思路: 我们通过构造矩阵, x , 3x,9x,27x 2x,6x,18 ...
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
- bzoj2734:[HNOI2012]集合选数(状压DP)
菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...
- 多米诺骨牌放置问题(状压DP)
例题: 最近小A遇到了一个很有趣的问题: 现在有一个\(n\times m\)规格的桌面,我们希望用\(1 \times 2\)规格的多米诺骨牌将其覆盖. 例如,对于一个\(10 \times 11\ ...
随机推荐
- 《Python基础教程读书笔记》
第1章 快速构造:基础知识 1.2交互式构造器 不强制分号,一行就是一行.可以加上分号 1.4数字和表达式 加.减.乘.除.整除.求余.指数.取反(-例如-2**2,**的优先级比-大) from _ ...
- SSL剥离工具sslstrip
SSL剥离工具sslstrip 在日常上网过程中,用户只是在地址栏中输入网站域名,而不添加协议类型,如HTTP和HTTPS.这时,浏览器会默认在域名之前添加http://,然后请求网站.如果网站采 ...
- 支持C++11标准
设置CB下的GCC. Settings->Compiler->Compiler Settings勾选Have g++ follow the C++11 ISO C++ language s ...
- golang 版本升降之后报错——imports runtime: C source files not allowed when not using cgo or SWIG
问题: golang 升级或者降级版本之后,执行编译报错如下: package github.com/onsi/ginkgo/ginkgo imports runtime: C source file ...
- android_浅析canvas的save()和restore()方法
<span style="font-size:18px;"> </span> <span style="font-size:18px;&qu ...
- JFinal学习 & Gradle配置续 & Tomcat配置
接上一篇对Gradle的学习,再用JFinal项目再建一个. 参考了这篇文章:https://my.oschina.net/u/1010578/blog/390094 但是其中没有代码,所以看了这篇 ...
- Java中的BigInteger在ACM中的应用
Java中的BigInteger在ACM中的应用 在ACM中的做题时,常常会遇见一些大数的问题.这是当我们用C或是C++时就会认为比較麻烦.就想有没有现有的现有的能够直接调用的BigInter,那样就 ...
- NYOJ 353 3D dungeon 【bfs】
题意:给你一个高L长R宽C的图形.每个坐标都能够视为一个方格.你一次能够向上.下.左,右,前,后任一方向移动一个方格, 可是不能向有#标记的方格移动. 问:从S出发能不能到达E,假设能请输出最少的移动 ...
- python入门之搭建环境
进入以下网站:python.org 选择你喜欢(需要)的版本下载 点击下载即可,本次提供下载:python3.6.3 (国外架设,非常慢) ,用百度的平台吧:python3.6.1,多谢百度. 开始安 ...
- BIEE11G系统数据源账号过期问题(默认安装步骤)
BIEE默认完毕安装后处于安全的考虑会对BI系统账户设定180天的有效期设置.例如以下图所看到的: 当账户超过时间后会自己主动口令失效.而造成BI系统启动失败.无法正常訪问等相关问题,到时候又一次设置 ...