转自http://blog.csdn.net/dongtingzhizi/article/details/6680050

C++函数调用过程深入分析

作者:靠谱哥

微博:洞庭之子-Bing

0. 引言

  函数调用的过程实际上也就是一个中断的过程,那么C++中到底是怎样实现一个函数的调用的呢?参数入栈、函数跳转、保护现场、回复现场等又是怎样实现的呢?本文将对函数调用的过程进行深入的分析和详细解释,并在VC 6.0环境下进行演示。分析不到位或者存在错误的地方请批评指正,请与作者联系。

  首先对三个常用的寄存器做一下说明,EIP是指令指针,即指向下一条即将执行的指令的地址;EBP为基址指针,常用来指向栈底;ESP为栈指针,常用来指向栈顶。

  看下面这个简单的程序并在VC 6.0中查看并分析汇编代码。

图1

1. 函数调用

  g_func函数调用的汇编代码如图2:

图2

   首先是三条push指令,分别将三个参数压入栈中,可以发现参数的压栈顺序是从右向左的。这时我们可以查看栈中的数据验证一下。如图3所示,从右边的实时寄存器表中我们可以看到ESP(栈顶指针)值为0x0012FEF0,然后从中间的内存表中找到内存地址0x0012FEF0处,我们可以看到内存中依次存储了0x00000001(即参数1),0x00000002(即参数2),0x00000003(即参数3),即此时栈顶存储的是三个参数值,说明压栈成功。

图3

  然后可以看到call指令跳转到地址0x00401005,那么该地址处是什么呢?我们继续跟踪一下,在图4中我们看到这里又是一条跳转指令,跳转到0x00401030。我们再看一下地址0x00401030处,在图5中可以看到这才是真正的g_func函数,0x00401030是该函数的起始地址,这样就实现了到g_func函数的跳转。

图4

图5

2. 保存现场          

  此时我们再来查看一下栈中的数据,如图6所示,此时的ESP(栈顶)值为0x0012FEEC,在内存表中我们可以看到栈顶存放的是0x00401093,下面还是前面压栈的参数1,2,3,也就是执行了call指令后,系统默认的往栈中压入了一个数据(0x00401093),那么它究竟是什么呢?我们再看到图3,call指令后面一条指令的地址就是0x00401093,实际上就是函数调用结束后需要继续执行的指令地址,函数返回后会跳转到该地址。这也就是我们常说的函数中断前的“保护现场”。这一过程是编译器隐含完成的,实际上是将EIP(指令指针)压栈,即隐含执行了一条push eip指令,在中断函数返回时再从栈中弹出该值到EIP,程序继续往下执行。

图6

  继续往下看,进入g_func函数后的第一条指令是push ebp,即将ebp入栈。因为每一个函数都有自己的栈区域,所以栈基址也是不一样的。现在进入了一个中断函数,函数执行过程中也需要ebp寄存器,而在进入函数之前的main函数的ebp值怎么办呢?为了不被覆盖,将它压入栈中保存。

下一条mov ebp, esp 将此时的栈顶地址作为该函数的栈基址,确定g_func函数的栈区域(ebp为栈底,esp为栈顶)。

  再往下的指令是sub esp, 48h,指令的字面意思是将栈顶指针往上移动48h Byte。那为什么要移动呢?这中间的内存区域用来做什么呢?这个区域为间隔空间,将两个函数的栈区域隔开一段距离,如图7所示。而该间隔区域的大小固定为40h,即64Byte,然后还要预留出存储局部变量的内存区域。g_func函数有两个局部变量x和y,所以esp需移动的长度为40h+8=48h。

图7

  接下来的几行指令(如下)是将刚才留出的48h的内存区域赋值为0CCCCCCCCh。

00401039   lea        edi,[ebp-48h]

0040103C   mov      ecx,12h

00401041   mov            eax,0CCCCCCCCh

00401046   rep stos    dword ptr [edi] 。

  接下来三条压栈指令,分别将EBX,ESI,EDI压入栈中,这也是属于“保护现场”的一部分,这些是属于main函数执行的一些数据。EBX,ESI,EDI分别为基址寄存器,源变址寄存器,目的变址寄存器。

3. 执行子函数

  继续往下看,接下来是局部变量的x和y的赋值,看汇编指令中是怎样去计算x和y的内存地址的呢?如图8所示,是基于ebp去计算的,分别是[ebp-4]和[ebp-8]。我们查看内存表可以看到相应的内存区域已经存入了0x11111111和0x22222222。

图8

  此时我们对整个内存区域中存储的内容应该非常清晰了(如图9所示)。

图9

4. 恢复现场

  这时子函数部分的代码已经执行完,继续往下看,编译器将会做一些事后处理的工作(如图10所示)。首先是三条出栈指令,分别从栈顶读取EDI,ESI和EBX的值。从图9的内存数据分布我们可以得知此时栈顶的数据确实是EDI,ESI和EBX,这样就恢复了调用前的EDI,ESI和EBX值,这是“恢复现场”的一部分。

图10

  第四条指令是mov esp, ebp 即将ebp的值赋给esp。那这是什么意思呢?看看图9的内存数据分布,我们就能很明白了,这条语句是让ESP指向EBP所指的内存单元,也就是让ESP跳过了一段区域,很明显跳过的恰好是间隔区域和局部数据区域,因为函数已经退出了,这两个区域都已经没有用处了。实际上这条语句是进入函数时创建间隔区域的语句 sub esp, 48h的相反操作。

  再往下是pop ebp,我们从图9的内存数据分布可以看出此时栈顶确实是存储的前EBP值,这样就恢复了调用前的EBP值,这也是“恢复现场”的一部分。该指令执行完后,内存数据分布如图11所示。

图11

  再往下是一条ret指令,即返回指令,他会怎么处理呢?注意在执行ret指令前的ESP值和EIP值(如图12所示),ESP指向栈顶的0x00401093,EIP的值是0x0040105C(即ret指令的地址)。

图12

  执行ret指令后我们来查看ESP和EIP值(如图13所示),此时ESP为0012FEF0,即往下移动了4Byte。显然此处编译器隐含的执行了一条pop指令。再来看一下EIP的值,变为了0x00401093,这个值怎么这么熟悉呢!它实际上就是栈顶的4Byte数据,所以这里隐含执行的指令应该是pop eip。而这个值就是前面讲到过的,在调用call指令前压栈的call的下一条指令的地址。从图13中可以看出,正是因为EIP的值变成了0x00401093,所以程序跳转到了call指令后面的一条指令,又回到了中断前的地方,这就是所谓的恢复断点。

图13

  还没有完全结束,此时还有最后一条指令add esp, 0Ch。这个就很简单了,从图13中可以看出现在栈顶的数据是1,2,3,也就是函数调用前压入的三个实参。这是函数已经执行完了,显然这三个参数没有用处了。所以add esp, 0Ch就是让栈顶指针往下移动12Byte的位置。为什么是12Byte呢,很简单,因为入栈的是3个int数据。这样由于函数调用在栈中添加的所有数据都已清除,栈顶指针(ESP)真正回到了函数调用前的位置,所有寄存器的值也恢复到了函数调用之前。

结束!

C++函数调用过程深入分析<转>的更多相关文章

  1. C++函数调用过程深入分析

    http://blog.csdn.net/dongtingzhizi/article/details/6680050 0. 引言 函数调用的过程实际上也就是一个中断的过程,那么C++中到底是怎样实现一 ...

  2. C++函数调用过程解析

    编译环境:Windows 10 + VS2015. 0.引言 函数调用的过程实际上也就是一个中断的过程,本文演示和深入分析参数入栈.函数跳转.保护现场.恢复现场等函数调用过程. 首先对三个常用的寄存器 ...

  3. 从一个新手容易混淆的例子简单分析C语言中函数调用过程

    某天,王尼玛写了段C程序: #include <stdio.h> void input() { int i; ]; ; i < ; i++) { array[i] = i; } } ...

  4. c函数调用过程原理及函数栈帧分析

    转载自地址:http://blog.csdn.net/zsy2020314/article/details/9429707       今天突然想分析一下函数在相互调用过程中栈帧的变化,还是想尽量以比 ...

  5. android的编译和运行过程深入分析

    android的编译和运行过程深入分析 作者: 字体:[增加 减小] 类型:转载 首先来看一下使用Java语言编写的Android应用程序从源码到安装包的整个过程,此过程对了解android的编译和运 ...

  6. 函数调用过程&生成器解释

    摘自马哥解答,感谢. 函数调用过程: 假设程序是单进程,单执行流,在某一时刻,能运行的程序流只能有一个.但函数调用会打开新的执行上下文,因此,为了确保main函数可以恢复现场,在main函数调用其它函 ...

  7. Linux驱动调试-根据oops的栈信息,确定函数调用过程

    上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的,那如何通过栈信息来查看出错函数的整个调用 ...

  8. C语言的函数调用过程

    从汇编的角度解析函数调用过程 看看下面这个简单函数的调用过程: int Add(int x,int y) { ; sum = x + y; return sum; } int main () { ; ...

  9. 37.Linux驱动调试-根据oops的栈信息,确定函数调用过程

    上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的 本章便通过栈信息来分析函数调用过程 1. ...

随机推荐

  1. mysql使用小结

    一.修改 mysql 的 root 密码 mysql> use mysql;  mysql> update user set password=password('123456') whe ...

  2. 服务迁移之路 | Spring Cloud向Service Mesh转变

    一.导读 Spring Cloud基于Spring Boot开发,提供一套完整的微服务解决方案,具体包括服务注册与发现,配置中心,全链路监控,API网关,熔断器,远程调用框架,工具客户端等选项中立的开 ...

  3. React 从入门到进阶之路(六)

    之前的文章我们介绍了 React 表单事件 键盘事件 事件对象以及 React中 的 ref 获取 dom 节点 .双向数据绑定.接下来我们将介绍 React 表单详解 约束性和非约束性组件 inpu ...

  4. Lightoj1011【KM算法】

    题意: 问男孩女孩最大的可能值?其实就是一个二分图的最大权值匹配问题:模板题吧.. #include<cstdio> #include<math.h> #include< ...

  5. PyCharm的一些使用技巧

    定位到函数定义 在函数名处 Ctrl + B 就会快速定位到函数定义处 在Console中执行文件 全选内容后,右键菜单 Execute Selection in Console 或者快捷键 Alt ...

  6. Codevs 1976 Queen数列

    1976 Queen数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 将1到N的整数数列(1,2,3,… ...

  7. 利用多项式实现图像几何校正(Matlab实现)

    1.原理简述:     根据两幅图像中的一些已知对应点(控制点对),建立函数关系式,通过坐标变换,实现失真图像的几何校正. 设两幅图像坐标系统之间畸变关系能用解析式来描述: 根据上述的函数关系,可以依 ...

  8. 快速对接payjs的个人支付接口(收银台模式)

    近期在了解个人支付接口,希望能解决我在微信上支付的问题.找了很多平台对比再三,感觉payjs比较专业,其它多是模仿payjs的东西.同时支持支付宝和微信,由于本人支付宝还没开通(需要有一定流量才给开通 ...

  9. 51Nod 1134 最长递增子序列(动态规划O(nlogn))

    #include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 usi ...

  10. OSPF-1-OSPF的数据库交换(2)

    2.Hello过程: (1)在同一子网中发现其他运行OSPF的路由器 所有启用了OSPF的接口,都会监听发往224.0.0.5的组播Hello消息,这是表示所有OSPF路由器的组播地址.Hello包使 ...