题目描述

Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N <= 700) water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.

Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:

+---5---+---3---+ -> +---3---+

Similarly, pipes in parallel let through water that is the sum of their flow capacities:

+---5---+

---+ +--- -> +---8---+

+---3---+

Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:

+---5---+

---+ -> +---3---+

+---3---+--

All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.

Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).

Consider this example where node names are labeled with letters:

+-----------6-----------+

A+---3---+B +Z

+---3---+---5---+---4---+

C D

Pipe BC and CD can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----3-----+-----4-----+

D Then BD and DZ can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----------3-----------+

Then two legs of BZ can be combined:

B A+---3---+---9---+Z

Then AB and BZ can be combined to yield a net capacity of 3:

A+---3---+Z

Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from 'A' to 'Z'. All

networks in the test data can be reduced using the rules here.

Pipe i connects two different nodes a_i and b_i (a_i in range

'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= 1,000). Note that lower- and upper-case node names are intended to be treated as different.

The system will provide extra test case feedback for your first 50 submissions.

约翰总希望他的奶牛有足够的水喝,因此他找来了农场的水管地图,想算算牛棚得到的水的 总流量.农场里一共有N根水管.约翰发现水管网络混乱不堪,他试图对其进行简 化.他简化的方式是这样的:

两根水管串联,则可以用较小流量的那根水管代替总流量.

两根水管并联,则可以用流量为两根水管流量和的一根水管代替它们

当然,如果存在一根水管一端什么也没有连接,可以将它移除.

请写个程序算出从水井A到牛棚Z的总流量.数据保证所有输入的水管网络都可以用上述方法 简化.

输入输出格式

输入格式:

  • Line 1: A single integer: N

  • Lines 2..N + 1: Line i+1 describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i

输出格式:

  • Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')

输入输出样例

输入样例#1:

5
A B 3
B C 3
C D 5
D Z 4
B Z 6
输出样例#1:

3 

思路:
  裸最大流; 来,上代码:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 500 using namespace std; struct EdgeType {
int v,next,flow;
};
struct EdgeType edge[maxn*maxn*]; int if_z,cnt=,head[maxn],deep[maxn],n; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int u,int v,int w)
{
edge[++cnt].v=v,edge[cnt].flow=w,edge[cnt].next=head[u],head[u]=cnt;
edge[++cnt].v=u,edge[cnt].flow=,edge[cnt].next=head[v],head[v]=cnt;
} bool BFS()
{
queue<int>que;que.push('A');
memset(deep,-,sizeof(deep));
deep['A']=;
while(!que.empty())
{
int pos=que.front();que.pop();
for(int i=head[pos];i;i=edge[i].next)
{
if(deep[edge[i].v]<&&edge[i].flow>)
{
deep[edge[i].v]=deep[pos]+;
if(edge[i].v=='Z') return true;
que.push(edge[i].v);
}
}
}
return false;
} int flowing(int now,int flow)
{
if(flow==||now=='Z') return flow;
int oldflow=;
for(int i=head[now];i;i=edge[i].next)
{
if(deep[edge[i].v]!=deep[now]+||edge[i].flow==) continue;
int pos=flowing(edge[i].v,min(flow,edge[i].flow));
flow-=pos;
oldflow+=pos;
edge[i].flow-=pos;
edge[i^].flow+=pos;
if(flow==) return oldflow;
}
return oldflow;
} int dinic()
{
int pos=;
while(BFS()) pos+=flowing('A',0x7ffffff);
return pos;
} int main()
{
in(n);char u,v;int w;
while(n--)
{
cin>>u>>v;in(w);
edge_add(u,v,w);
}
printf("%d\n",dinic());
return ;
}

AC日记——[USACO09JAN]全流Total Flow 洛谷 P2936的更多相关文章

  1. AC日记——[USACO15DEC]最大流Max Flow 洛谷 P3128

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  2. 2018.07.06 洛谷P2936 [USACO09JAN]全流Total Flow(最大流)

    P2936 [USACO09JAN]全流Total Flow 题目描述 Farmer John always wants his cows to have enough water and thus ...

  3. 洛谷——P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  4. 洛谷 P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  5. [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  6. 【luogu P2936 [USACO09JAN]全流Total Flow】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2936 菜 #include <queue> #include <cstdio> #i ...

  7. P2936(BZOJ3396) [USACO09JAN]全流Total Flow[最大流]

    题 裸题不多说,在网络流的练习题里,你甚至可以使用暴力. #include<bits/stdc++.h> using namespace std; typedef long long ll ...

  8. AC日记——【模板】二分图匹配 洛谷 P3386

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

  9. AC日记——[USACO10MAR]仓配置Barn Allocation 洛谷 P1937

    [USACO10MAR]仓配置Barn Allocation 思路: 贪心+线段树维护: 代码: #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. .pyc文件的结构体PyCodeObject

    python执行程序时生成的pyc文件里面是,PyCodeObject 的结构体构成,每个命名空间(函数名.import模块等)都会形成一个core block,一个python程序的所有命名空间生成 ...

  2. 【Jenskins】安装与配置

    Jenskins教程:http://www.yiibai.com/jenkins/ 一.Jenskins的安装 1.jenskins下载和启动 Jenskins下载地址:https://jenkins ...

  3. Centos 7下利用crontab定时执行任务详解

    一 cron服务 cron服务是Linux的内置服务,但它不会开机自动启动.可以用以下命令启动和停止服务: /sbin/service crond start /sbin/service crond ...

  4. dependency or constituency

    what's dependenct or constituency involved in a sentence? In linguistics, when it comes to sentence ...

  5. 根据已经commit的数据,进行leader和peon之间的同步

    Leader Election基本设计 按照rank表示优先级解决冲突问题,为每个monitor预先分配了一个rank 只会接受优先级(rank)比自己高.epoch比上次已接受的epoch大的选举请 ...

  6. 换一种思维看待PHP VS Node.js

    php和javascript都是非常流行的编程语言,刚刚开始一个服务于服务端,一个服务于前端,长久以来,它们都能够和睦相处,直到有一天,一个叫做node.js的JavaScript运行环境诞生后,再加 ...

  7. A - 装箱问题

    Problem Description 一个工厂生产的产品形状都是长方体,高度都是h,主要有1*1,2*2,3*3,4*4,5*5,6*6等6种.这些产品在邮寄时被包装在一个6*6*h的长方体包裹中. ...

  8. iOS学习笔记02-UIScrollView

    父类UIView方法 // autoresizingMask - 现在基本弃用,改用autoLayout typedef NS_OPTIONS(NSUInteger, UIViewAutoresizi ...

  9. HDU——2093考试排名(string类及其函数的运用以及istringstream)

    考试排名 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  10. 百度网络监控实战:NetRadar横空出世(下)

    原文:https://mp.weixin.qq.com/s/CvCs-6rX8Lb5vSTSjYQaBg 转自订阅号「AIOps智能运维」,已授权运维帮转发 作者简介:运小贝,百度高级研发工程师 负责 ...