题目描述

Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N <= 700) water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.

Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:

+---5---+---3---+ -> +---3---+

Similarly, pipes in parallel let through water that is the sum of their flow capacities:

+---5---+

---+ +--- -> +---8---+

+---3---+

Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:

+---5---+

---+ -> +---3---+

+---3---+--

All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.

Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).

Consider this example where node names are labeled with letters:

+-----------6-----------+

A+---3---+B +Z

+---3---+---5---+---4---+

C D

Pipe BC and CD can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----3-----+-----4-----+

D Then BD and DZ can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----------3-----------+

Then two legs of BZ can be combined:

B A+---3---+---9---+Z

Then AB and BZ can be combined to yield a net capacity of 3:

A+---3---+Z

Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from 'A' to 'Z'. All

networks in the test data can be reduced using the rules here.

Pipe i connects two different nodes a_i and b_i (a_i in range

'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= 1,000). Note that lower- and upper-case node names are intended to be treated as different.

The system will provide extra test case feedback for your first 50 submissions.

约翰总希望他的奶牛有足够的水喝,因此他找来了农场的水管地图,想算算牛棚得到的水的 总流量.农场里一共有N根水管.约翰发现水管网络混乱不堪,他试图对其进行简 化.他简化的方式是这样的:

两根水管串联,则可以用较小流量的那根水管代替总流量.

两根水管并联,则可以用流量为两根水管流量和的一根水管代替它们

当然,如果存在一根水管一端什么也没有连接,可以将它移除.

请写个程序算出从水井A到牛棚Z的总流量.数据保证所有输入的水管网络都可以用上述方法 简化.

输入输出格式

输入格式:

  • Line 1: A single integer: N

  • Lines 2..N + 1: Line i+1 describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i

输出格式:

  • Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')

输入输出样例

输入样例#1:

5
A B 3
B C 3
C D 5
D Z 4
B Z 6
输出样例#1:

3 

思路:
  裸最大流; 来,上代码:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 500 using namespace std; struct EdgeType {
int v,next,flow;
};
struct EdgeType edge[maxn*maxn*]; int if_z,cnt=,head[maxn],deep[maxn],n; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int u,int v,int w)
{
edge[++cnt].v=v,edge[cnt].flow=w,edge[cnt].next=head[u],head[u]=cnt;
edge[++cnt].v=u,edge[cnt].flow=,edge[cnt].next=head[v],head[v]=cnt;
} bool BFS()
{
queue<int>que;que.push('A');
memset(deep,-,sizeof(deep));
deep['A']=;
while(!que.empty())
{
int pos=que.front();que.pop();
for(int i=head[pos];i;i=edge[i].next)
{
if(deep[edge[i].v]<&&edge[i].flow>)
{
deep[edge[i].v]=deep[pos]+;
if(edge[i].v=='Z') return true;
que.push(edge[i].v);
}
}
}
return false;
} int flowing(int now,int flow)
{
if(flow==||now=='Z') return flow;
int oldflow=;
for(int i=head[now];i;i=edge[i].next)
{
if(deep[edge[i].v]!=deep[now]+||edge[i].flow==) continue;
int pos=flowing(edge[i].v,min(flow,edge[i].flow));
flow-=pos;
oldflow+=pos;
edge[i].flow-=pos;
edge[i^].flow+=pos;
if(flow==) return oldflow;
}
return oldflow;
} int dinic()
{
int pos=;
while(BFS()) pos+=flowing('A',0x7ffffff);
return pos;
} int main()
{
in(n);char u,v;int w;
while(n--)
{
cin>>u>>v;in(w);
edge_add(u,v,w);
}
printf("%d\n",dinic());
return ;
}

AC日记——[USACO09JAN]全流Total Flow 洛谷 P2936的更多相关文章

  1. AC日记——[USACO15DEC]最大流Max Flow 洛谷 P3128

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  2. 2018.07.06 洛谷P2936 [USACO09JAN]全流Total Flow(最大流)

    P2936 [USACO09JAN]全流Total Flow 题目描述 Farmer John always wants his cows to have enough water and thus ...

  3. 洛谷——P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  4. 洛谷 P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  5. [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  6. 【luogu P2936 [USACO09JAN]全流Total Flow】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2936 菜 #include <queue> #include <cstdio> #i ...

  7. P2936(BZOJ3396) [USACO09JAN]全流Total Flow[最大流]

    题 裸题不多说,在网络流的练习题里,你甚至可以使用暴力. #include<bits/stdc++.h> using namespace std; typedef long long ll ...

  8. AC日记——【模板】二分图匹配 洛谷 P3386

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

  9. AC日记——[USACO10MAR]仓配置Barn Allocation 洛谷 P1937

    [USACO10MAR]仓配置Barn Allocation 思路: 贪心+线段树维护: 代码: #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. MySQL - INSERT 集合

    范例1: INSERT INTO t_table SELECT ot.* FROM t_other_table ot WHERE ot.is_sent = ? and ot.insert_time & ...

  2. nginx下配置laravel+rewrite重写

    server { listen ; server_name ha.d51v.cn; #access_log /data/wwwlogs/access_nginx.log combined; root ...

  3. 【php】【异步】php实现异步的几种方法

    请参考  4种php常用的异步执行方式 ajax 和 img 的 src 属性 系统指令调用 (在php代码里面调用系统指令) curl socket通信 ​

  4. Python9-网络编程3-day32

    解决黏包的问题 #server import socket sk = socket.socket() sk.bind(('127.0.0.1',8080)) sk.listen() conn,addr ...

  5. Altium Designer入门学习笔记2:使用原创客3D元件库

    请自行淘宝购买: 元件库列表(2018年11月27日): 问题一:在项目库或已安装的库中找不到? 将"原创客"提供的文件全部添加到libraries中!"原创客" ...

  6. poj-2488 a knight's journey(搜索题)

    Time limit1000 ms Memory limit65536 kB Background The knight is getting bored of seeing the same bla ...

  7. Android Studio中不能显示svn的上传下载两个图标同时version control为灰,不可点击

    最近在接触Android Studio,涉及到svn的配置,因为是先安装的svn,后安装的Android Studio,后边同事告诉我, Android Studio 的SVN安装与其他IDE有很大差 ...

  8. build.xml: 21: Class not found: javac1.8

    在eclipse里运用ant时经常碰到class not found的错误提示,从而编译失败,其实是eclipse中本身的ant版本太老造成该的,但我今天安装的ant是1.8.4,感觉已经很新了,但编 ...

  9. TTL与COMS的区别

    1.电平的上限和下限定义不一样,CMOS具有更大的抗噪区域. 同是5伏供电的话,ttl一般是1.7V和3.5V的样子,CMOS一般是  2.2V,2.9V的样子,不准确,仅供参考. 2.电流驱动能力不 ...

  10. HDU 5510 Bazinga KMP

    题意: 给\(n(1 \leq n \leq 500)\)个字符串,求一个最大的\(i\),使得存在一个\(S_{j}\)不是\(S_i\)的子串. 分析: 维护两个指针\(l,r\) 那么有两种情况 ...