【BZOJ2561】最小生成树 最小割
【BZOJ2561】最小生成树
Description
给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?
Input
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。
Output
输出一行一个整数表示最少需要删掉的边的数量。
Sample Input
3 2 1
1 2 3
1 2 2
Sample Output
HINT
对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。
题解:回忆Kruskal的过程,如果只用边权<L的点,u和v就能连通,那么(u,v)一定不再最小生成树上。所以,我们只保留边权<L的点,跑u->v的最小割即可。
最大生成树同理。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int S,T,L,n,m,cnt,ans; int head[20010],next[800010],val[800010],to[800010],d[20010],pa[200010],pb[200010],len[200010];
queue<int> q; int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
int i,u;
d[S]=1,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i;
for(i=1;i<=m;i++) pa[i]=rd(),pb[i]=rd(),len[i]=rd();
S=rd(),T=rd(),L=rd();
memset(head,-1,sizeof(head)),cnt=0;
for(i=1;i<=m;i++) if(len[i]<L) add(pa[i],pb[i],1),add(pb[i],pa[i],1);
while(bfs()) ans+=dfs(S,1<<30);
memset(head,-1,sizeof(head)),cnt=0;
for(i=1;i<=m;i++) if(len[i]>L) add(pa[i],pb[i],1),add(pb[i],pa[i],1);
while(bfs()) ans+=dfs(S,1<<30);
printf("%d",ans);
return 0;
}
【BZOJ2561】最小生成树 最小割的更多相关文章
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- BZOJ2521[Shoi2010]最小生成树——最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- BZOJ2521 最小生成树 最小割
5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法 ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- BZOJ 2521 最小生成树(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...
随机推荐
- java并发框架Executor介绍
Executor框架是指java 5中引入的一系列并发库中与executor相关的一些功能类,其中包括线程池,Executor,Executors,ExecutorService,Completion ...
- 几个类和Table的方法
public class TableHelper { public static DataTable CreateTableFromClass(Type t) { DataTable dt = new ...
- 【Codevs1034】家园(最大流,裂点)
题意:由于人类对自然的疯狂破坏,人们意识到在大约2300年之后,地球不能再居住了,于是在月球上建立了新的绿地,以便在需要时移民.令人意想不到的是,2177年冬由于未知的原因,地球环境发生了连锁崩溃,人 ...
- 标准C程序设计七---35
Linux应用 编程深入 语言编程 标准C程序设计七---经典C11程序设计 以下内容为阅读: <标准C程序设计>(第7版) 作者 ...
- asp传递参数的几种方式
把下列代码分别加入a.asp和b.asp的<body></body>中,点提交,就可以将a.asp文本框的内容传给b.asp并显示出来 a.ASP <form actio ...
- 分布式缓存之Memcache
〇.为什么要用分布式缓存 1.软件从单机到分布式 走向分布式第一步就是解决:多台机器共享登录信息的问题. 例如:现在有三台机器组成了一个Web的应用集群,其中一台机器用户登录,然后其他另外两台机器共享 ...
- SQL-基础学习1--SELECT,LIMIT,DISTINCT,注释
所使用的数据库资料在:数据库资料 1.1 基础概念 1.数据库(database) 保存有组织的数据的容器(通常是一个文件或一组文件) 注意:常用的mysql,等是数据库管理系统DBMS:由这些软件创 ...
- iOS -- app全局字体设置
方法一: 写一个UILabel(FontExtension)扩展重写initWithFrame(手写代码必走方法)和awakeFromNib(xib必走方法)当然UIButton.UITextView ...
- 终极报错解决方案:Error:Execution failed for task ':app:processDebugManifest'. > Manifest merger failed with
遇到这个报错的时候,不要慌 Error:Execution failed for task ':app:processDebugManifest'. > Manifest merger fail ...
- Solidworks安装完成提示failed to load slderresu.dll怎么办
安装完成出现下面的一系列错误提示 进入到语言包,重新安装中文语言包即可 可以正常打开和运行了