前面一篇应该算是比较详细的介绍了spark的基础知识,在了解了一些spark的知识之后相必大家对spark应该不算陌生了吧!如果你之前写过MapReduce,现在对spark也很熟悉的话我想你再也不想用MapReduce去写一个应用程序了,不是说MapReduce有多繁琐(相对而言),还有运行的效率等问题。而且用spark写出来的程序比较优雅,这里我指的是scala版的,如果你用java版的spark去写一个应用程序,对比scala版的,想必你肯定会爱上scala这门语言的,哈哈哈(以上纯属个人观点,具体场景具体对待)

实现目标1:根据采集的日志信息,统计总的pv量 。

需求分析:在大数据领域,采集数据的常采用的手段就是怼网站进行埋点然后根据需求收集相关的数据,这里我们用的是最基本的日志信息来做处理,数据来源于某网站,可以分享出来给大家使用,完了后我会将代码还有数据 文件放到GitHub上供大家下载。首先我们来看看日志文件(access.log)的格式:

这是标准的一条日志信息,当然我们如果是统计网站的pv总量的话不需要考虑对日志进行清洗的工作。以下是pv统计的代码:

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} //todo:利用Spark程序统计运营商pv总量
object PV extends App{
//创建sparkConf对象
private val sparkConf: SparkConf = new SparkConf().setAppName("PV").setMaster("local[2]")
//创建SparkContext对象
private val sc: SparkContext = new SparkContext(sparkConf)
//设置输出的日志级别
sc.setLogLevel("WARN")
//读取日志数据
private val dataRDD: RDD[String] = sc.textFile("E:\\access.log")
//统计pv总量====方式一:计算有多少行及pv总量
private val finalResult1: Long = dataRDD.count()
println(finalResult1)
//方式二:每一条日志信息记为一条数据1
private val pvOne: RDD[(String, Int)] = dataRDD.map(x=>("PV",))
//对pv根据key进行累加
private val resultPV: RDD[(String, Int)] = pvOne.reduceByKey(_+_)
//打印pv总量
resultPV.foreach(x=>println(x))
//关闭资源
sc.stop()
}

结果如下:

实现目标2:根据采集的日志信息,统计总的uv量 。

需求分析:目标数据文件还是access.log,比较简单,直接看代码:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD //todo:利用spark统计运营商uv总量
object UV extends App{
//创建sparkConf对象
private val sparkConf: SparkConf = new SparkConf().setAppName("PV").setMaster("local[2]")
//创建SparkContext对象
private val sc: SparkContext = new SparkContext(sparkConf)
//设置输出的日志级别
sc.setLogLevel("WARN")
//读取日志数据
private val dataRDD: RDD[String] = sc.textFile("E:\\access.log")
//切分每一行,获取对应的ip地址
private val ips: RDD[String] = dataRDD.map(_.split(" ")())
//去重
private val ipNum: Long = ips.distinct().count()
println(ipNum)
//g关闭资源
sc.stop()
}

结果 如下:

实现目标3:根据采集的日志信息,统计访问最多的前五位网站降序排列 TopN。

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD //todo:利用spark计算运营商访问url最多的前n位=====TopN
object TopN extends App{
//创建sparkConf对象
private val sparkConf: SparkConf = new SparkConf().setAppName("PV").setMaster("local[2]")
//创建SparkContext对象
private val sc: SparkContext = new SparkContext(sparkConf)
//设置输出的日志级别
sc.setLogLevel("WARN")
//读取日志数据
private val dataRDD: RDD[String] = sc.textFile("E:\\access.log")
//对每一行的日志信息进行切分并且过滤清洗掉不符合规则的数据
//通过对日志信息的分析,我们知道按照空格切分后,下标为10的是url,长度小于10的暂且认为是不符合规则的数据
private val urlAndOne: RDD[(String, Int)] = dataRDD.filter(_.split(" ").size>).map(x=>(x.split(" ")(),))
//相同url进行累加
private val result: RDD[(String, Int)] = urlAndOne.reduceByKey(_+_)
//访问最多的url并进行倒叙排序
private val sortResult: RDD[(String, Int)] = result.sortBy(_._2,false)
//取前五位
private val finalResult: Array[(String, Int)] = sortResult.take()
//打印输出
finalResult.foreach(println)
sc.stop()
}

运行结果:

spark实战之网站日志分析的更多相关文章

  1. 基于Spark的网站日志分析

    本文只展示核心代码,完整代码见文末链接. Web Log Analysis 提取需要的log信息,包括time, traffic, ip, web address 进一步解析第一步获得的log信息,如 ...

  2. Hadoop学习笔记—20.网站日志分析项目案例(一)项目介绍

    网站日志分析项目案例(一)项目介绍:当前页面 网站日志分析项目案例(二)数据清洗:http://www.cnblogs.com/edisonchou/p/4458219.html 网站日志分析项目案例 ...

  3. Spark SQL慕课网日志分析(1)--系列软件(单机)安装配置使用

    来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个 ...

  4. Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗

    网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html 网站日志分析项目案例(二)数据清洗:当前页面 网站日志分析项目案例 ...

  5. Hadoop学习笔记—20.网站日志分析项目案例(三)统计分析

    网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html 网站日志分析项目案例(二)数据清洗:http://www.cnbl ...

  6. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  7. Hadoop学习笔记—20.网站日志分析项目案例

    1.1 项目来源 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖.回帖,如图1所示. 图1 项目来源网站-技术学习论坛 本次实践的目的就在于 ...

  8. Apache 网站日志分析

    1.获得访问前 10 位的 ip 地址 [root@apache ~]# cat access_log |awk '{print $1}'|sort|uniq -c|sort -nr|head -10 ...

  9. Spark 实践——基于 Spark Streaming 的实时日志分析系统

    本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计, ...

随机推荐

  1. C++学习 - 虚表,虚函数,虚函数表指针学习笔记

    http://blog.csdn.net/alps1992/article/details/45052403 虚函数 虚函数就是用virtual来修饰的函数.虚函数是实现C++多态的基础. 虚表 每个 ...

  2. Java面向对象_内部类

    概念:内部类就是类的内部定义的类 成员内部类格式如下:class Outer{ class Inner{} } 编译上述代码会产生两个文件:Outer.class和Outer$Inner.class ...

  3. (转)Linux 文件和目录的属性

    linux 文件属性与权限 原文:https://www.cnblogs.com/kzloser/articles/2673790.html https://www.cnblogs.com/danh/ ...

  4. 【Java】在eclipse中使用maven进行项目构建 入门篇

    maven配置的简单说明 从\192.168.30.150\103.初级人员培训资料\新建文件夹 (2)\环境下提取apache-maven-3.0.4.zip压缩包,解压缩至E盘下 在E盘下新建&q ...

  5. easyui datagrid关于分页的问题

    easyui框架中datagrid可以很好的来展示大量的列表数组,但是由于datagrid一般都是从控件本身传递一个页码给后台,后台进行处理. 但是,最近项目跟webgis有关,数据查询直接是从服务中 ...

  6. 微信退款和支付宝退款接口调用(java版)

    项目中需要使用到微信和支付宝的退款功能,在这两天研究了一下这两个平台的退款,有很多坑,在开发中需要留意 1.微信退款接口 相对来说我感觉微信的退款接口还是比较好调用的,直接发送httppost请求即可 ...

  7. C#中Dictionary泛型集合7种常见的用法

    要使用Dictionary集合,需要导入C#泛型命名空间 System.Collections.Generic(程序集:mscorlib)  Dictionary的描述1.从一组键(Key)到一组值( ...

  8. C#利用WebClient 两种方式下载文件(一)

    WebClient client = new WebClient(); 第一种 string URLAddress = @"http://files.cnblogs.com/x4646/tr ...

  9. 【extjs6学习笔记】0.4 准备: 书籍与文档

    Ext JS 6 By Example Ext JS Essentials Learning Ext JS - Fourth Edition Ext JS 6: Getting Started htt ...

  10. CentOS-7.3.1611编译安装 Nginx-1.12.1+mysql-5.7.19+PHP-7.1.8+zabbix-3.4.1

    CentOS-7.3.1611编译安装 Nginx-1.12.1+mysql-5.7.19+PHP-7.1.8+zabbix-3.4.1 下载软件 1.下载nginx http://nginx.org ...