【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
题面
题解
考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\)推过来。
发现可以从\(sg[a][b]\)推到\(sg[a][b+1]\)的值很少,所以可以直接把这些值全部提前计算出来,这部分大概有\(\sqrt n\)个,剩下的可以推到\(sg[a+1][b]\)而不能推到\(sg[a][b+1]\)的位置可以通过\(a\)以及最大的满足\(x^b\le n\)的\(x\)直接计算出来。
#include<iostream>
#include<cstdio>
#include<cmath>
int n,m,a,b,B[35];
bool f[35000][35],vis[35000][35];
int calc(int a,int b)
{
if(a>B[b])return true;
if(a>B[b+1])return (B[b]-a)&1;
if(vis[a][b])return f[a][b];
vis[a][b]=true;
if(!calc(a+1,b))return f[a][b]=true;
if(!calc(a,b+1))return f[a][b]=true;
return f[a][b]=false;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=32;++i)B[i]=floor(pow(n,1.0/i)+1e-9);
while(m--)
{
scanf("%d%d",&a,&b);
puts(calc(a,b)?"Yes":"No");
}
return 0;
}
【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)的更多相关文章
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】
题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...
- [UOJ #51]【UR #4】元旦三侠的游戏
题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$ ...
- 【UR #4】元旦三侠的游戏(博弈论+记忆化)
http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...
- A. 【UR #4】元旦三侠的游戏
题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...
- uoj51 元旦三侠的游戏
题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
随机推荐
- rsync服务的安装与配置
rsync 服务的安装配置与客户端的同步操作 1. 使用xinetd服务运行rsync服务: 服务器端: 1.关闭selinux,设置iptables开放xinetd的873端口 2. yum - ...
- LSP5513
LSP5513:宽范围高效的DC-DC(输入:4.5~27V;输出0.925~24V,3A),输出电流达3A
- 基于Matlab的标记分水岭分割算法
转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more d ...
- 通过Chrome执行watir-webdriver
1.http://code.google.com/p/chromedriver/downloads/list 下载chromedriver驱动文件chromedriver.exe 2.把驱动文件放在 ...
- 搭建高可用mongodb集群(一)——mongodb配置主从模式
转载自:LANCEYAN.COM 在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQ ...
- P1216 [USACO1.5]数字三角形 Number Triangles
题目描述 观察下面的数字金字塔. 写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大.每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 2 7 4 4 4 5 ...
- jQuery选择器之样式
.attr()与.removeAttr() 每个元素都有一个或者多个特性,这些特性的用途就是给出相应元素或者其内容的附加信息.如:在img元素中,src就是元素的特性,用来标记图片的地址. 操作特性的 ...
- XSS 攻击实验 & 防御方案
XSS 攻击&防御实验 不要觉得你的网站很安全,实际上每个网站或多或少都存在漏洞,其中xss/csrf是最常见的漏洞,也是最容易被开发者忽略的漏洞,一不小心就要被黑 下面以一个用户列表页面来演 ...
- vue+element ui项目总结点(六)table编辑当前行、删除当前行、新增、合计操作
具体属性方法参考官方网站:http://element-cn.eleme.io/#/zh-CN/component/installation <template> <div clas ...
- 如何计算支撑向量数(SVs)
申明:转载请注明出处. 支持向量机(SVM)是一个成熟的单分类器,常常用于对比实验中.往往需要统计支持向量数量来比较算法优劣,MATLAB有自带的SVM工具箱,用法如下: [train, test] ...