【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
题面
题解
考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\)推过来。
发现可以从\(sg[a][b]\)推到\(sg[a][b+1]\)的值很少,所以可以直接把这些值全部提前计算出来,这部分大概有\(\sqrt n\)个,剩下的可以推到\(sg[a+1][b]\)而不能推到\(sg[a][b+1]\)的位置可以通过\(a\)以及最大的满足\(x^b\le n\)的\(x\)直接计算出来。
#include<iostream>
#include<cstdio>
#include<cmath>
int n,m,a,b,B[35];
bool f[35000][35],vis[35000][35];
int calc(int a,int b)
{
if(a>B[b])return true;
if(a>B[b+1])return (B[b]-a)&1;
if(vis[a][b])return f[a][b];
vis[a][b]=true;
if(!calc(a+1,b))return f[a][b]=true;
if(!calc(a,b+1))return f[a][b]=true;
return f[a][b]=false;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=32;++i)B[i]=floor(pow(n,1.0/i)+1e-9);
while(m--)
{
scanf("%d%d",&a,&b);
puts(calc(a,b)?"Yes":"No");
}
return 0;
}
【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)的更多相关文章
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】
题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...
- [UOJ #51]【UR #4】元旦三侠的游戏
题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$ ...
- 【UR #4】元旦三侠的游戏(博弈论+记忆化)
http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...
- A. 【UR #4】元旦三侠的游戏
题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...
- uoj51 元旦三侠的游戏
题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
随机推荐
- ArrayList简单学习
类声明: public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomA ...
- TDH-search常用命令
一.指令部分:1.search管理界面地址: http://172.20.230.110:9200/_plugin/head/ 2.集群状态查看命令: curl -XGET 'localhost:92 ...
- webstock学习
1.WebSocket是HTML5中出出现的新技术,有着web TCP之称,这也是为了适应现在实时传输数据的趋势,在这之前一般采用两种方法进行实时数据交换. 轮询机制,其中又包括长轮询. ①短轮询是指 ...
- 【C#】.net 导出Excel功能
将DataSet对象导出成Excel文档 一.不带格式控制 void btnExport_Click(object sender, EventArgs e) { IList<string> ...
- drupal6提示 Compilation failed: disallowed Unicode code point (>= 0xd800 && <= 0xdfff) at offset 9 on line 615
解决办法:将sites\all\modules\ctools\includes\cleanstring.inc文件中的61行改成62行这样子即可,如下图
- 【cpp】new delete
double *M = new double[2*num]; double *T = new double[2 * num]; double *activeM = new double[2 * num ...
- H5移动端图片裁剪(base64)
在移动端开发的过程中,或许会遇到对图片裁剪的问题.当然遇到问题问题,不管你想什么方法都是要进行解决的,哪怕是丑点,难看点,都得去解决掉. 图片裁剪的jquery插件有很多,我也测试过很多,不过大多数都 ...
- MySQL select * 和把所有的字段都列出来,哪个效率更高?
MySQL select * 和把所有的字段都列出来,哪个效率更高 答案是:如何,都不推荐使用 SELECT * FROM (1)SELECT *,需要数据库先 Query Table Metadat ...
- COGS 1144. [尼伯龙根之歌] 精灵魔法
★ 输入文件:alfheim.in 输出文件:alfheim.out 简单对比时间限制:1 s 内存限制:128 MB [题目背景] 『谜题在丛林中散发芳香绿叶上露珠跳跃着歌唱火焰在隐 ...
- 洛谷 P2347 砝码称重 != codevs 2144
题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1g砝码有a1个,2g砝 ...