题意:

给出一个 N×M 的矩阵,以及一个数值 K ,求在给定的矩阵中取出一个 K×K 的矩阵其中最大值减去最小值的最小值。

细节:

没有细节来发暴力走天下,20分也是分啊~~~ QAQ。

分析:

感觉是一题裸体,大佬们看了一定秒切,但是本蒟蒻显然不会,二维不易可以先尝试如何求解在 1×K 的矩阵中求解答案呢,显然是利用一个数组 Max1[i][j] 表示第 i 行区间 [ j , j + K - 1] 的最大值,Min1[i][j] 表示第 i 行区间 [ j , j + K - 1] 的最小值,每行利用一个单调队列进行定区间求最值的操作,最后 O(N×M) 的枚举所有的 1×K 的矩阵,求解最小值即可。

  好吧此时你应该豁然开朗,这(TM <- 希望忽略这个东西)就是将一维的数组在进行一次求解,得到二维数组的最值即可,仍然利用一个数组 Max2[i][j] 表示纵向区间 [i , i + K - 1]、横向区间 [j , j + K - 1]中的最大值,Min2[i][j] 表示纵向区间 [i , i + K - 1]、横向区间 [j , j + K - 1]中的最小值,只需要对上面一步操作的中的 Max1[][]、Min1[][]数组,每列利用一个单调队列进行定区间求最值,同样是 O(N×M) 的时间复杂度处理出了所有 K×K 的矩阵,最后只需要统计答案所指向的最优值即可。

  实际上本题也是含有少许 Dp 的思想,将大多的重复与不必要同过单调队列的思想进行了优化,这应该是一道不错的练手的模板题。

代码:

 #include<cstdio>
#include<iostream>
using namespace std;
int n,m,k,front,FRONT,back,BACK,ans;
int a[][],q[],Q[],x[][],X[][],y[][],Y[][];
int main()
{
scanf("%d%d%d",&n,&m,&k);
for (int I=;I<=n;I++)
for (int i=;i<=m;i++)
scanf("%d",&a[I][i]);
for (int I=;I<=n;I++){
FRONT=BACK=front=back=Q[]=q[]=;
for (int i=;i<=m;i++){
while (a[I][i]>=a[I][Q[BACK]]&&FRONT<=BACK) BACK--;
while (a[I][i]<=a[I][q[back]]&&front<=back) back--;
BACK++;back++;Q[BACK]=i;q[back]=i;
while (i-Q[FRONT]>=k) FRONT++;
while (i-q[front]>=k) front++;
if (i>=k) X[I][i-k+]=a[I][Q[FRONT]],x[I][i-k+]=a[I][q[front]];
}
}
for (int I=;I<=m-k+;I++){
FRONT=BACK=front=back=Q[]=q[]=;
for (int i=;i<=n;i++){
while (X[i][I]>=X[Q[BACK]][I]&&FRONT<=BACK) BACK--;
while (x[i][I]<=x[q[back]][I]&&front<=back) back--;
BACK++;back++;Q[BACK]=i;q[back]=i;
while (i-Q[FRONT]>=k) FRONT++;
while (i-q[front]>=k) front++;
if (i>=k) Y[i-k+][I]=X[Q[FRONT]][I],y[i-k+][I]=x[q[front]][I];
}
}
ans=0x3f3f3f3f;
for (int I=;I<=n-k+;I++)
for (int i=;i<=m-k+;i++) ans=min(ans,Y[I][i]-y[I][i]);
printf("%d\n",ans);
return ;
}

咳咳,此代码代码风格奇异,可能不是原创,请各位阅读者谅解…… QWQ。

Luogu 2216 [HAOI2007]理想的正方形 (单调队列优化)的更多相关文章

  1. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  2. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  3. [Luogu 2216] [HAOI2007]理想的正方形

    [Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...

  4. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  5. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  6. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  7. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  8. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. jQuery scrollLeft()与scrollTop() 源码解读

    这里的实现也很容易懂,通过jQuery的静态方法each给jQuery的原型添加scrollLeft和scrollTop方法. 这里在取值时它把window和普通的element做了区分 如果是win ...

  2. CAD 安装时出现.net frameword 3.5安装不上的问题

    右击---我的电脑---功能---.net framework 3.5 ---勾选---安装,然后再进行安装CAD即可

  3. SQL Server插入中文数据出现乱码问题

    我在用sql server存储数据的时候发现中文全变成了问号,我知道中文是特殊的编码.所以在数据库设计的时候包含中文的字段就是nvarchar,但是还是成了问号 好了,不多说了,解决方案如下: 在存储 ...

  4. 前端上传插件Plupload的实际使用(个人实操)

    一个主要的页面,其中包裹了一个iframe页面,在项目中,这个iframe页面包裹在主页面的div标签中,主要用于上传文件附件. 用的是plupload.full插件,主要引入以下几个js: jque ...

  5. c#网站对服务器的数据库的备份与还原

    在网站上备份数据库 1.前台页面 <div> 需要备份的文件名:<asp:TextBox ID="bfFile" runat="server" ...

  6. ios UI自动化测试

    转载:http://www.cnblogs.com/dokaygang128/p/3517674.html 一.一些注意事项: 1.做自动化测试时注意如果是真机话首先要设置不锁屏. 2.自动化测试过程 ...

  7. 电脑公司最新稳定win7系统下载

    系统来自系统妈:http://www.xitongma.com 系统概述 电脑公司ghost win7 x86(32位)万能装机版集成的软件符合电脑公司及电脑城装机绝大多数人要求及喜好,既大众,又时尚 ...

  8. Date/Time Functions and Operators (Postgres)

            http://www.postgresql.org/docs/9.1/static/functions-datetime.html   Search Documentation:  H ...

  9. lwz-过去一年的总结(15-16)

    今天2016年2月6日,还有1个半小时的时间,就要离开这个工作了9个月的地方,准备前往下个城市了.趁着这点时间,来给过去的一年做个即兴的总结吧. 2015年的2月份,在以前同学的提议和支持下,我重新学 ...

  10. (三)VMware harbor使用http访问

    参考:https://www.cnblogs.com/biglittleant/p/7283738.html harbor使用http访问 如果使用http启动harbor需要在docker中配置-- ...