目标检测之显著区域检测---国外的一个图像显著区域检测代码及其效果图 saliency region detection
先看几张效果图吧
效果图:
可以直接测试的代码:
头文件:
// Saliency.h: interface for the Saliency class.
//
//////////////////////////////////////////////////////////////////////
//===========================================================================
// Copyright (c) 2009 Radhakrishna Achanta [EPFL]
//===========================================================================
#if !defined(_SALIENCY_H_INCLUDED_)
#define _SALIENCY_H_INCLUDED_
#include <vector>
#include <cfloat>
using namespace std;
class Saliency
{
public:
Saliency();
virtual ~Saliency();
public:
void GetSaliencyMap(
const vector<unsigned int>& inputimg,//INPUT: ARGB buffer in row-major order
const int& width,
const int& height,
vector<double>& salmap,//OUTPUT: Floating point buffer in row-major order
const bool& normalizeflag = true);//false if normalization is not needed
private:
void RGB2LAB(
const vector<unsigned int>& ubuff,
vector<double>& lvec,
vector<double>& avec,
vector<double>& bvec);
void GaussianSmooth(
const vector<double>& inputImg,
const int& width,
const int& height,
const vector<double>& kernel,
vector<double>& smoothImg);
//==============================================================================
/// Normalize
//==============================================================================
void Normalize(
const vector<double>& input,
const int& width,
const int& height,
vector<double>& output,
const int& normrange = 255)
{
double maxval(0);
double minval(DBL_MAX);
{int i(0);
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
if( maxval < input[i] ) maxval = input[i];
if( minval > input[i] ) minval = input[i];
i++;
}
}}
double range = maxval-minval;
if( 0 == range ) range = 1;
int i(0);
output.clear();
output.resize(width*height);
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
output[i] = ((normrange*(input[i]-minval))/range);
i++;
}
}
}
};
#endif // !defined(_SALIENCY_H_INCLUDED_)
cpp:
// Saliency.cpp: implementation of the Saliency class.
//
//////////////////////////////////////////////////////////////////////
//===========================================================================
// Copyright (c) 2009 Radhakrishna Achanta [EPFL]
//===========================================================================
#include "Saliency.h"
#include <cmath>
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
Saliency::Saliency()
{
}
Saliency::~Saliency()
{
}
//===========================================================================
/// RGB2LAB
//===========================================================================
void Saliency::RGB2LAB(
const vector<unsigned int>& ubuff,
vector<double>& lvec,
vector<double>& avec,
vector<double>& bvec)
{
int sz = int(ubuff.size());
lvec.resize(sz);
avec.resize(sz);
bvec.resize(sz);
for( int j = 0; j < sz; j++ )
{
int r = (ubuff[j] >> 16) & 0xFF;
int g = (ubuff[j] >> 8) & 0xFF;
int b = (ubuff[j] ) & 0xFF;
double xval = 0.412453 * r + 0.357580 * g + 0.180423 * b;
double yval = 0.212671 * r + 0.715160 * g + 0.072169 * b;
double zVal = 0.019334 * r + 0.119193 * g + 0.950227 * b;
xval /= (255.0 * 0.950456);
yval /= 255.0;
zVal /= (255.0 * 1.088754);
double fX, fY, fZ;
double lval, aval, bval;
if (yval > 0.008856)
{
fY = pow(yval, 1.0 / 3.0);
lval = 116.0 * fY - 16.0;
}
else
{
fY = 7.787 * yval + 16.0 / 116.0;
lval = 903.3 * yval;
}
if (xval > 0.008856)
fX = pow(xval, 1.0 / 3.0);
else
fX = 7.787 * xval + 16.0 / 116.0;
if (zVal > 0.008856)
fZ = pow(zVal, 1.0 / 3.0);
else
fZ = 7.787 * zVal + 16.0 / 116.0;
aval = 500.0 * (fX - fY)+128.0;
bval = 200.0 * (fY - fZ)+128.0;
lvec[j] = lval;
avec[j] = aval;
bvec[j] = bval;
}
}
//==============================================================================
/// GaussianSmooth
///
/// Blur an image with a separable binomial kernel passed in.
//==============================================================================
void Saliency::GaussianSmooth(
const vector<double>& inputImg,
const int& width,
const int& height,
const vector<double>& kernel,
vector<double>& smoothImg)
{
int center = int(kernel.size())/2;
int sz = width*height;
smoothImg.clear();
smoothImg.resize(sz);
vector<double> tempim(sz);
int rows = height;
int cols = width;
//--------------------------------------------------------------------------
// Blur in the x direction.
//---------------------------------------------------------------------------
{int index(0);
for( int r = 0; r < rows; r++ )
{
for( int c = 0; c < cols; c++ )
{
double kernelsum(0);
double sum(0);
for( int cc = (-center); cc <= center; cc++ )
{
if(((c+cc) >= 0) && ((c+cc) < cols))
{
sum += inputImg[r*cols+(c+cc)] * kernel[center+cc];
kernelsum += kernel[center+cc];
}
}
tempim[index] = sum/kernelsum;
index++;
}
}}
//--------------------------------------------------------------------------
// Blur in the y direction.
//---------------------------------------------------------------------------
{int index = 0;
for( int r = 0; r < rows; r++ )
{
for( int c = 0; c < cols; c++ )
{
double kernelsum(0);
double sum(0);
for( int rr = (-center); rr <= center; rr++ )
{
if(((r+rr) >= 0) && ((r+rr) < rows))
{
sum += tempim[(r+rr)*cols+c] * kernel[center+rr];
kernelsum += kernel[center+rr];
}
}
smoothImg[index] = sum/kernelsum;
index++;
}
}}
}
//===========================================================================
/// GetSaliencyMap
///
/// Outputs a saliency map with a value assigned per pixel. The values are
/// normalized in the interval [0,255] if normflag is set true (default value).
//===========================================================================
void Saliency::GetSaliencyMap(
const vector<unsigned int>& inputimg,
const int& width,
const int& height,
vector<double>& salmap,
const bool& normflag)
{
int sz = width*height;
salmap.clear();
salmap.resize(sz);
vector<double> lvec(0), avec(0), bvec(0);
RGB2LAB(inputimg, lvec, avec, bvec);
//--------------------------
// Obtain Lab average values
//--------------------------
double avgl(0), avga(0), avgb(0);
{for( int i = 0; i < sz; i++ )
{
avgl += lvec[i];
avga += avec[i];
avgb += bvec[i];
}}
avgl /= sz;
avga /= sz;
avgb /= sz;
vector<double> slvec(0), savec(0), sbvec(0);
//----------------------------------------------------
// The kernel can be [1 2 1] or [1 4 6 4 1] as needed.
// The code below show usage of [1 2 1] kernel.
//----------------------------------------------------
vector<double> kernel(0);
kernel.push_back(1.0);
kernel.push_back(2.0);
kernel.push_back(1.0);
GaussianSmooth(lvec, width, height, kernel, slvec);
GaussianSmooth(avec, width, height, kernel, savec);
GaussianSmooth(bvec, width, height, kernel, sbvec);
{for( int i = 0; i < sz; i++ )
{
salmap[i] = (slvec[i]-avgl)*(slvec[i]-avgl) +
(savec[i]-avga)*(savec[i]-avga) +
(sbvec[i]-avgb)*(sbvec[i]-avgb);
}}
if( true == normflag )
{
vector<double> normalized(0);
Normalize(salmap, width, height, normalized);
swap(salmap, normalized);
}
}
关于代码的使用说明:
This file explains the usage of Saliency.h and Saliency.cpp files. The former contains the declaration of the Saliency class and its member functions and the later contains the respective definitions.
Sample usage:
#include "Saliency.h"
void main()
{
// Assume we already have an unsigned integer buffer inputImg of
// inputWidth and inputHeight (in row-major order).
// Each unsigned integer has 32 bits and contains pixel data in ARGB
// format. I.e. From left to right, the first 8 bits contain alpha
// channel value and are not used in our case. The next 8 bits
// contain R channel value; the next 8 bits contain G channel value;
// the last 8 bits contain the B channel value.
//
// Now create a Saliency object and call the GetSaliencyMap function on it.
Saliency sal;
vector<double> salmap(0);
sal.GetSaliencyMap(inputImg, inputWidth, inputHeight, salmap);
// salmap is a floating point output (in row major order)
}
我自己写的测试主程序:
可以指定一个文件夹,程序保存该文件夹下所有jpg文件的处理结果
#include "Saliency.h"
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include "windows.h"
#include <iostream>
#include <cassert>
using namespace std;
int main(int argc,char** argv)
{
WIN32_FIND_DATAA FileData;
HANDLE hFind;
hFind = FindFirstFileA((LPCSTR)"Imgs/*.jpg",&FileData);
if (hFind == INVALID_HANDLE_VALUE) {
printf ("Invalid File Handle. GetLastError reports %d/n",
GetLastError ());
return (0);
}
Saliency sal;
vector<double> salmap(0);
while (FindNextFileA(hFind, &FileData)) {
cout<<FileData.cFileName<<endl;
string name("Imgs/");
name.append(FileData.cFileName);
IplImage* img=cvLoadImage(name.c_str());
if (!img) {
cout<<"failed to load image"<<endl;
break;
}
assert(img->nChannels==3);
vector<unsigned int >imgInput;
vector<double> imgSal;
//IplImage to vector
for (int h=0;h<img->height;h++) {
unsigned char*p=(unsigned char*)img->imageData+h*img->widthStep;
for (int w=0;w<img->width;w++) {
unsigned int t=0;
t+=*p++;
t<<=8;
t+=*p++;
t<<=8;
t+=*p++;
imgInput.push_back(t);
}
}
sal.GetSaliencyMap(imgInput, img->width, img->height, imgSal);
//vector to IplImage
int index=0;
IplImage* imgout=cvCreateImage(cvGetSize(img),IPL_DEPTH_64F ,1);
for (int h=0;h<imgout->height;h++) {
double*p=(double*)(imgout->imageData+h*imgout->widthStep);
for (int w=0;w<imgout->width;w++) {
*p++=imgSal[index++];
}
}
name.append(".saliency.jpg");
cvSaveImage(name.c_str(),imgout);
cvReleaseImage(&img);
cvReleaseImage(&imgout);
}
FindClose(&hFind);
return 0;
}
该代码的主页:http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/index.html
清华的最新研究:http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/
http://blog.csdn.net/onezeros/article/details/6299745#comments
目标检测之显著区域检测---国外的一个图像显著区域检测代码及其效果图 saliency region detection的更多相关文章
- Halcon从某一个图片以指定区域绘制到另一个图像
************************************************************* * Halcon从某一个图片以指定区域绘制到另一个图像 * Author: ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3. 1.失焦检测. 衡量画面模糊的主要方 ...
- paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...
- [开发技巧]·HTML检测输入已完成自动填写下一个内容
[开发技巧]·HTML检测输入已完成自动填写下一个内容 个人网站 --> http://www.yansongsong.cn 在上一个博客中简易实现检测输入已完成,我们实现了检测输入已完成,现在 ...
- 根据序列图像聚焦区域获取深度 Shape From Focus
最为超新新新新鸟...我也不知道第一篇文章应该写什么..所以,把自己最近正在研究的东西报一下吧, 研究的东西其实也不算深奥,就是对一个图像序列中的每张图像进行检测,发现每张图片的聚焦清晰区域,找到这个 ...
- 四种简单的图像显著性区域特征提取方法-----AC/HC/LC/FT。
四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT. 分类: 图像处理 2014-08-03 12:40 4088人阅读 评论(4) 收藏 举报 salient regio ...
随机推荐
- javaweb之Filter详解
一.概念:Filter也称之为过滤器,它是Servlet技术中比较激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态图片文件或 ...
- TinyXML2使用教程(转)
原文转自 http://blog.csdn.net/K346K346/article/details/48750417 1.TinyXML2概述 TinyXML2是simple.small.effic ...
- py2exe打包整个项目
这段时间做了用Python做了一个科学计算的项目,项目中用到了很多的第三方Python库,包括PyQt.traits.traitsui.matplotlib.pyface.table.numpy.tv ...
- wpf LookUpEdit PopupContentTemplate
<dxg:LookUpEdit Name="searchLookUpEdit" HorizontalAlignment="Stretch" PopupHe ...
- poj 1950(搜索)
Dessert Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5430 Accepted: 2029 Descripti ...
- 网络入侵检测规避工具fragrouter
网络入侵检测规避工具fragrouter 网络入侵检测系统可以通过拦截数据包,获取内容进而判断是否为恶意数据包.对于传输较大的数据包,通常会采用分片的方式,将大数据包拆分为小数据包进行传输.如果入 ...
- spring事物,在service层如果进行了异常处理,则不会回滚
今天进行了事物处理的验证,发现如果在在service层如果进行了异常处理,则不会回滚. 看来异常的处理还是统一放在controller层比较好,service如果是查询方法,出现了异常,就不要做处理了 ...
- 深入理解Atomic原子类
Atomic是基于unsafe类和自旋操作实现的,下面以AtomicInteger类为例进行讲解. 要理解Atomic得先了解CAS CAS CAS全程Compare And Swap ,是条并发原语 ...
- Spring MVC中@ControllerAdvice注解实现全局异常拦截
在网上很多都把Advice翻译成增强器,其实从翻译工具上看到,这个单词翻译是忠告,通知的意思. 首先这个注解实在Spring Web包下,而Spring MVC离不开Spring Web的依赖,所以经 ...
- BT种子文件文件结构分析(转)
估计80%以上接触互联网的人都知道bt是什么东西,任何一个用bt下载的人都知道这样一个概念,种子.bt种子就是记录了p2p对等网络中tracker, nodes, files等信息,也就是说,这个种子 ...