Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters.

<b< dd="">

Output

For each s you should print the largest n such that s = a^n for some string a. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3

求最大循环长度。

KMP可以求,之前做过,见。

http://www.cnblogs.com/hua-dong/p/8016873.html

http://www.cnblogs.com/hua-dong/p/8016916.html

这里实现了后缀数组(不过好像被卡了,只能同KMP实现)。

#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
int min(int x,int y) { if(x<y) return x;return y;}
using namespace std;
const int maxn=;
char ch[maxn];
struct SA
{
int Rank[maxn],sa[maxn],tsa[maxn],A[maxn],cntA[maxn],B[maxn],cntB[maxn];
int ht[maxn],Min[maxn][],N;
void get_SA()
{
N=strlen(ch+);
for(int i=;i<=;i++) cntA[i]=;
for(int i=;i<=N;i++) cntA[ch[i]]++;
for(int i=;i<=;i++) cntA[i]+=cntA[i-];
for(int i=N;i>=;i--) sa[cntA[ch[i]]--]=i;
Rank[sa[]]=;
for(int i=;i<=N;i++) Rank[sa[i]]=Rank[sa[i-]]+(ch[sa[i]]==ch[sa[i-]]?:);
for(int l=;Rank[sa[N]]<N;l<<=){
for(int i=;i<=N;i++) cntA[i]=cntB[i]=;
for(int i=;i<=N;i++) cntA[A[i]=Rank[i]]++;
for(int i=;i<=N;i++) cntB[B[i]=i+l<=N?Rank[i+l]:]++;
for(int i=;i<=N;i++) cntA[i]+=cntA[i-],cntB[i]+=cntB[i-];
for(int i=N;i>=;i--) tsa[cntB[B[i]]--]=i;
for(int i=N;i>=;i--) sa[cntA[A[tsa[i]]]--]=tsa[i];
Rank[sa[]]=;
for(int i=;i<=N;i++) Rank[sa[i]]=Rank[sa[i-]]+(A[sa[i]]==A[sa[i-]]&&B[sa[i]]==B[sa[i-]]?:);
}
}
void get_hgt()
{
for(int i=,j=;i<=N;i++){
if(j) j--;
while(ch[i+j]==ch[sa[Rank[i]-]+j]) j++;
ht[Rank[i]]=j;
}
}
void get_rmq()
{
for(int i=;i<=N;i++) Min[i][]=ht[i];
for(int i=;(<<i)<=N;i++)
for(int j=;j+(<<i)-<=N;j++){
Min[j][i]=min(Min[j][i-],Min[j+(<<(i-))][i-]);
}
}
int query_rmq(int L,int R)
{
if(L>R) swap(L,R);L++;
int k=log2(R-L+);
return min(Min[L][k],Min[R-(<<k)+][k]);
}
void solve()
{
int ans=;
for(int i=;i<=N;i++){
if(N%i!=) continue;
if(i+query_rmq(Rank[],Rank[+i])==N) {
ans=N/i; break;
}
} printf("%d\n",ans);
}
}Sa;
int main()
{
while(~scanf("%s",ch+)){
if(ch[]=='.') return ;
Sa.get_SA();
Sa.get_hgt();
Sa.get_rmq();
Sa.solve();
} return ;
}

ZOJ1905Power Strings (KMP||后缀数组+RMQ求循环节)的更多相关文章

  1. POJ2406 Power Strings(KMP,后缀数组)

    这题可以用后缀数组,KMP方法做 后缀数组做法开始想不出来,看的题解,方法是枚举串长len的约数k,看lcp(suffix(0), suffix(k))的长度是否为n- k ,若为真则len / k即 ...

  2. URAL 题目1297. Palindrome(后缀数组+RMQ求最长回文子串)

    1297. Palindrome Time limit: 1.0 second Memory limit: 64 MB The "U.S. Robots" HQ has just ...

  3. hdu 2459 (后缀数组+RMQ)

    题意:让你求一个串中连续重复次数最多的串(不重叠),如果重复的次数一样多的话就输出字典序小的那一串. 分析:有一道比这个简单一些的题spoj 687, 假设一个长度为l的子串重复出现两次,那么它必然会 ...

  4. 【uva10829-求形如UVU的串的个数】后缀数组+rmq or 直接for水过

    题意:UVU形式的串的个数,V的长度规定,U要一样,位置不同即为不同字串 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&am ...

  5. HDU 3746 Cyclic Nacklace (KMP求循环节问题)

    <题目链接> 题目大意: 给你一个字符串,要求将字符串的全部字符最少循环2次需要添加的字符数. [>>>kmp next函数 kmp的周期问题]  #include &l ...

  6. HDU 4691 后缀数组+RMQ

    思路: 求一发后缀数组,求个LCP 就好了 注意数字有可能不只一位 (样例2) //By SiriusRen #include <bits/stdc++.h> using namespac ...

  7. POJ 3693 后缀数组+RMQ

    思路: 论文题 后缀数组&RMQ 有一些题解写得很繁 //By SiriusRen #include <cmath> #include <cstdio> #includ ...

  8. spoj687 REPEATS - Repeats (后缀数组+rmq)

    A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...

  9. POJ2406Power Strings (最小循环节)(KMP||后缀数组)

    Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc&quo ...

随机推荐

  1. ETL拉链算法汇总大全

    拉链算法总结大全: 一.0610算法(追加) 1.删除仓库表的载入日期是本次载入日期的数据,以支持重跑 delete from xxx where start_dt >=$tx_date; 2. ...

  2. js 中的 prototype 和 constructor

    var a=function(){ this.msg="aa"; } a.prototype.say=function(){ alert('this is say');} 1.只有 ...

  3. 解决opencv无法读AVI视频的问题

    原文来自:http://blog.csdn.net/yeqiu712/article/details/6220030 其实AVI只是一个外壳.里面的东西可不一样的! 问题:为什么我的电脑支持AVI或者 ...

  4. HDFS源码分析DataXceiver之整体流程

    在<HDFS源码分析之DataXceiverServer>一文中,我们了解到在DataNode中,有一个后台工作的线程DataXceiverServer.它被用于接收来自客户端或其他数据节 ...

  5. MAC平台create-react-app使用问题(command not found)

    You are able to apply the following solution: $ npm config set prefix /usr/local $ sudo npm install ...

  6. 最新精品 强势来袭 XP,32/64位Win7,32/64位Win10系统【电脑城版】

    随着Windows 10Build 10074 Insider Preview版发布,有理由相信,Win10离最终RTM阶段已经不远了.看来稍早前传闻的合作伙伴透露微软将在7月底正式发布Win10的消 ...

  7. 基于redis的分布式锁二种应用场景

    “分布式锁”是用来解决分布式应用中“并发冲突”的一种常用手段,实现方式一般有基于zookeeper及基于redis二种.具体到业务场景中,我们要考虑二种情况: 一.抢不到锁的请求,允许丢弃(即:忽略) ...

  8. Java知识点梳理——读写分离

    1.读写分离:可以通过Spring提供的AbstractRoutingDataSource类,重写determineCurrentLookupKey方法,实现动态切换数据源的功能:读写分离可以有效减轻 ...

  9. json 数据返回解密

    http://www.cnhan.com/shantui//dynamic/get/data/allCompanyInfoByCompCode.json?compCode=6SU5YCJ <sc ...

  10. 使用cocos2d-js-3.0RC1中的物理引擎chipmunk模拟的“别碰钉子”源码分享(含碰撞检测)

    分别用box2d和chipmunk实现了一下,不过box2d没整理,也懒得整理了.chipmunk整理了一下,分享给大家吧. 刚开始研究,抛砖引玉 简要说明:1.初始化物理环境,增加边界 initPh ...