UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077
题意:
问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}。
题解:
1.根据过程的互逆性,可直接求{1,2,3……n}至少需要交换多少次才能变成{a1,a2,a3……an},因此可直接把{a1,a2,a3……an}看成是{1,2,3……n}的置换。为什么呢?
答:1 2 3
2 3 1 可知把“2 3 1”看作是经过置换后的序列,则:2-->1(2放到1)、3-->2(3放到2)、1-->3(1放到3)。
把“2 3 1”看作是置换, 则:1-->2(1放到2)、2-->3(2放到3)、3-->1(3放到1)。
所以把序列看成是置换的话,那么它与变成自己的置换的形状完全相同,只是所有箭头的方向都发生了改变。
2.将一个置换分解成若干个循环,对于一个长度为len的循环,需要交换len-1次才能使得里面的每一个元素回到自己的位置(每一次交换都能使得一个元素回到原来的位置,一直交换到最后一个,就直接在自己的位置上。所以位len-1)。
3.根据第二点,即有多少个循环,就能减少多少次交换。而交换了k次,即减少了n-k交换,因此也就有n-k个循环。把n个有区别的元素排列成n-k个循环(圈),即为第一类斯特林数。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = ; unsigned long long dp[MAXN][MAXN];
void init()
{
memset(dp, , sizeof(dp));
for(int i = ; i<=; i++) //第一类斯特林数
{
dp[i][] = ; dp[i][i] = ;
for(int j = ; j<i; j++)
dp[i][j] = 1LL*dp[i-][j-] + 1LL*(i-)*dp[i-][j];
}
} int main()
{
init();
int n, k;
while(scanf("%d%d", &n, &k)&&(n||k))
printf("%llu\n", dp[n][n-k]);
}
UVA11077 Find the Permutations —— 置换、第一类斯特林数的更多相关文章
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- Codeforces 715E - Complete the Permutations(第一类斯特林数)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- 【CF960G】Bandit Blues(第一类斯特林数,FFT)
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...
随机推荐
- 解决使用maven jetty启动后无法加载修改过后的静态资源
jetty模式是不能修改js文件的,比如你现在调试前端js,发现在myeclipse/eclipse的源码里面无法修改文件,点都不让你点,所以,你只能采用一些办法,更改jetty的模式配置. Look ...
- 移植opencv2.4.9到itop4412开发板
OpenCV是眼下开源项目中最著名的基于机器视觉方向的图像处理的开发包,眼下已经有被移植到嵌入式Linux环境上. 本文介绍了OpenCV交叉编译的基本步骤. 在opencv交叉编译之前要先进行依赖库 ...
- /etc/shadow 密码加密方法
[root@mysql-master ~]# cat /etc/shadowroot:$6$spzQDWctb8Lmju0o$KoUz5Qwv1tWyVYfd5cuBw.TQVIaCvCX8ixGG9 ...
- shell脚本学习笔记 (正則表達式)
正則表達式一般有三个部分组成,他们各自是:字符类,数量限定符,位置限定符. 规定一些特殊语法表示字符类.数 量限定符和位置关系,然后用这些特殊语法和普通字符一起表示一个模式,这就是正則表達式(Regu ...
- 常用组件介绍 ---- Layout_weight
下面这些也可以算是组件 文本区 TextView 文本框 EditText layout 容器 view 千万不要把Layout_weight 与 Layout_width相混淆**** ...
- Android · SQLiteOpenHelper实例PrivateContactsDBHelper
package privatecontact; import android.content.ContentValues; import android.content.Context; import ...
- 文件I/O之C标准库函数和系统库函数差别
1.首先C标准库函数是工作在系统库函数之上的.C标准库函数在读写文件时候都有一个文件流指针.FILE*fp=NULL;// fp=fopen(F_PATH,"r"); fp文件流指 ...
- 地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
// test20.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- OpenCV 入门示例之四:一个简单的变换
前言 图像的平滑处理,是计算机视觉中非常重要的操作,本文将展示一个可以对图像进行平滑处理的简单程序.而关于平滑处理深层次的知识,会在以后的文章中重点探讨. 代码示例 // 此头文件包含图像IO函数的声 ...
- CentOS Python 安装MySQL-python
一.安装mysql yum list | grep mysql >>yum install -y mysql-server mysql mysql-devel CentOS 7的yum源中 ...