题目传送门

这道题暑假做的时候太模糊了,以前的那篇题解大家就别看了==。今天再复习状压感觉自己当时在写些什么鸭...。

题目大意:给你一个\(n\)*\(m\)的棋盘和许多\(1*2\)的骨牌,骨牌可以竖放或横放,问有多少种方案将骨牌铺满。

设计状态,\(f[i][j]\)表示当前在第\(i\)行,之前的所有行都已经铺满,当前行的状态为\(j\)的方案数。如果我们对01串的定义仍确定为1为放了0为没放,那么真的对嘛?

好像不行,存出不了那么多信息。我们试着改变0和1的含义。因为骨牌要么是横放要么是竖放,那么我们设第\(k\)位为1是一个竖矩形的上面一半,为0代表其他情况。

考虑转移,第\(i-1\)行能转移到第\(i\)行当且仅当①这一行状态与上一行状态与运算为0.(保证了每个数字为1的位下面一定为0,以继续补全)。②两行状态或运算后的二进制表示,连续的0长度必须为偶数,表示横放。

于是我们可以预处理出所有横放的情况,再进行\(O(4^m*n)\)的转移。目标状态\(f[n][0]\)。

把01的含义改变的思想妙啊。

#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll; int n,m,fake;
ll f[12][4200000];
bool qwq[4200000]; int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n!=0)
{
fake=(1<<m)-1;
// for(int i=0;i<=fake;i++)
// if(check(i)) qwq[i]=1;
for(int i=0;i<=fake;i++)
{
bool cnt=0,has_odd=0;
for(int j=0;j<m;j++)
if((i>>j)&1) has_odd|=cnt,cnt=0;
else cnt^=1;
qwq[i]=has_odd | cnt ? 0 : 1;
}
f[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=fake;j++)
{
f[i][j]=0;
for(int k=0;k<=fake;k++)
{
if(j&k) continue;
if(!qwq[j|k]) continue;
f[i][j]+=f[i-1][k];
}
}
printf("%lld\n",f[n][0]);
}
return 0;
}

POJ 2411 Mondriaan's Dream 【状压Dp】 By cellur925的更多相关文章

  1. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  2. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  3. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  4. POJ 2411 Mondriaan'sDream(状压DP)

    题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...

  5. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  6. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  7. POJ - 2411 Mondriaan's Dream(轮廓线dp)

    Mondriaan's Dream Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nig ...

  8. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  9. poj 2411 Mondriaan's Dream (轮廓线DP)

    题意:有一个n*m的棋盘,要求用1*2的骨牌来覆盖满它,有多少种方案?(n<12,m<12) 思路: 由于n和m都比较小,可以用轮廓线,就是维护最后边所需要的几个状态,然后进行DP.这里需 ...

  10. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

随机推荐

  1. 在Linux下搭建我的世界(Minecraft)服务器

    最近薅了百度云双12的羊毛,1核2G一年150.突然想起以前大学整个宿舍通宵开黑挖泥土的岁月,所以刚好趁着这台服务器,打算自己搭建一个我的世界服务器,重温一下以前的感觉. 超详细Linux搭建Java ...

  2. POJ1743 Musical Theme —— 后缀数组 重复出现且不重叠的最长子串

    题目链接:https://vjudge.net/problem/POJ-1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Tot ...

  3. 算法(Algorithms)第4版 练习 1.3.10

    主要思路:和1.3.9相似,只不过运算表达式的生成方式不一样 用Dijkstra的双栈算法. 遇到数字则压入数字栈中(String). 遇到运算符则压入运算符栈中(String). 遇到右括号时,从数 ...

  4. ssh_jar包选择

    1.struts2.3.29 + spring-framework-3.2.9.RELEASE +hibernate-distribution-3.6.10 * struts 所需jar 在:如下所示 ...

  5. win8+sdk8+vs2012+freeglut+glew开发opengl

    写给想要学习opengl的同学们. 刚开始学习opengl的时候,对于整个环境的搭建以及一些概念不太清晰,网上的资料又比较凌乱,因此在此总结一下,方便大家. 首先,是有一个windows系统,我用的是 ...

  6. 三年java软件工程师应有的技技能

    摘要:http://blog.csdn.net/jieinasiainfo/article/details/51177729 http://blog.csdn.net/kangqianglong/ar ...

  7. vsftpd虚拟用户【公司系统部分享】

    一,安装相关工具包 #yum -y install pam vsftpd db4 db4-utils -- pam 是用来提供身份验证的 -- vsftpd 是ftp服务的主程序 -- db4支持文件 ...

  8. SpringMVC拦截器的配置与使用详解

         一.SpringMVC拦截器简介      Spring MVC的处理器拦截器类似于Servlet开发中的过滤器Filter,用于对处理器进行预处理和后处理.在springmvc中,定义拦截 ...

  9. linux命令学习笔记(44):top命令

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管 理器.下面详细介绍它的使用方法.top是一个动态显示过程,即可以通过用户按键来不断刷 ...

  10. 【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大

    Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containin ...