洛谷P1587 [NOI2016]循环之美
不会,先坑着
https://kelin.blog.luogu.org/solution-p1587
//minamoto
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=7e5+,E=2e6+;
typedef int arr[N];typedef long long ll;
struct Am{int nx,x,w;}e1[E];
struct Ans{int nx,n,m,k;ll w;}e2[E];
int n,m,k,M,c1,c2,K[],f1[E],f2[E];arr vis,p,mu,sum;
int Sm(int x){
if(x<=M) return sum[x];
int u=(x+)%E;
for(int i=f1[u];i;i=e1[i].nx)
if(e1[i].x==x) return e1[i].w;
e1[++c1]=(Am){f1[u],x,},f1[u]=c1;
int &w=e1[c1].w,i=,j=sqrt(x);
for(;i<=j;++i) w-=Sm(x/i);
for(;i<=x;i=j+)
j=x/(x/i),w-=(j-i+)*Sm(x/i);
return w;
}
ll sol(int n,int m,int k){
if(!n||!m) return ;
int u=(2017ll*n+m+k)%E;
for(int i=f2[u];i;i=e2[i].nx)
if(e2[i].n==n&&e2[i].m==m&&e2[i].k==k) return e2[i].w;
e2[++c2]=(Ans){f2[u],n,m,k,},f2[u]=c2;ll &w=e2[c2].w;
if(k==){
if(n>m) swap(n,m);
int i=,j=sqrt(n),s,t=,x,y;
for(;i<=j;++i,t=s) s=Sm(i),w+=1ll*(n/i)*(m/i)*(s-t);
for(;i<=n;i=j+,t=s)x=n/i,y=m/i,j=min(n/x,m/y),s=Sm(j),w+=1ll*x*y*(s-t);
u=(2017ll*m+n+k)%E;e2[++c2]=(Ans){f2[u],m,n,k,w},f2[u]=c2;
}
else for(int i=;i<=K[]&&K[i]<=k;++i)
if(k%K[i]==&&mu[K[i]])
w+=sol(m/K[i],n,K[i])*mu[K[i]];
return w;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d",&n,&m,&k);
M=min(N-,max(k,min(n,m))),sum[]=mu[]=;
for(int i=;i<=M;++i){
if(!vis[i]) p[++p[]]=i,mu[i]=-;
for(int j=,x;j<=p[]&&(x=i*p[j])<=M;++j){
vis[x]=;
if(i%p[j]==) break;
mu[x]=-mu[i];
}
sum[i]=sum[i-]+mu[i];
}
for(int i=;i<=k;++i)
if(k%i==) K[++K[]]=i;
printf("%lld\n",sol(n,m,k));
return ;
}
洛谷P1587 [NOI2016]循环之美的更多相关文章
- Solution -「NOI 2016」「洛谷 P1587」循环之美
\(\mathcal{Description}\) Link. 给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
- 并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美
题目大意 对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\ ...
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- LOJ 2085: 洛谷 P1587: bzoj 4652: 「NOI2016」循环之美
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \( ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
随机推荐
- IOS 长姿势---双击Home键
这不值得大惊小怪,因为按两次Home键后,苹果只是简单第提供了一个历史任务列表,而不是人们以为的当前任务列表——这在苹果网站上已经说得很清楚了.至于为什么苹果没有能力为用户提供一个“任务管理器”,我们 ...
- 细说后端模板渲染、客户端渲染、node 中间层、服务器端渲染(ssr)
细说后端模板渲染.客户端渲染.node 中间层.服务器端渲染(ssr) 前端与后端渲染方式的发展大致经历了这样几个阶段:后端模板渲染.客户端渲染.node 中间层.服务器端渲染(ssr). 1. 后端 ...
- Git查看并修改name和email
显示name的方法: git config user.name git config --list 或者查看~/.gitconfig文件. 改名字: git config --global user. ...
- callback机制之内核通知链表【转】
本文转载自:http://bbs.chinaunix.net/thread-2011776-1-1.html 1.通知链表简介 大多数内核子系统都是相互独立的,因此某个子系统可能对其它子系统产生 ...
- 51nod 1225
题目 题解:看数据范围就估计是根号算法.考虑我们要求的式子: $ \sum\limits_{i = 1}^n {n - \left\lfloor {\frac{n}{i}} \right\rfloor ...
- Java里的阻塞队列
JDK7提供了7个阻塞队列,如下: ArrayBlockingQueue : 一个数组结构组成的有界阻塞队列. LinkedBlockingQueue : 一个由链表结构组成的有界阻塞队列 . Pr ...
- 截取带HTML标签的文本并保留文本样式
一个截取HTML文本的工具,可以按照文字字数或文字字节长度进行截取,保留HTML样式并在最后自动补齐截取后的标签.按工作要求编写,时间紧迫,代码未优化,欢迎讨论和指正.1. [文件] SubHtml ...
- not in和not exist的区别(转)
in和exists in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询.一直以来认为exists比in效率高的说法是不准确的. 如果查询的两个 ...
- 0x01
随便记录点想法什么的, 这个博客的编辑界面挺简陋的...
- Unix环境编程之文件IO
1.文件IO 2.文件与目录 3.进程 4.多线程编程 5.信号 6.进程间通信 学习linux编程,首先要学会使用shell,这里一些基础命令就不介绍了.这里唯一要提的一个shell命令就是man. ...