Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking 

本文目标在于 tracking performance 和 efficiency 之间达到一种平衡。将 tracking 过程分解为两个并行但是相互协作的部分:

  一个用于快速的跟踪(fast tracking);

  另一个用于准确的验证(accurate verification)。

  

本文的 Motivation 主要是:

  1. 大部分跟踪的序列,都是比较平坦简单的,但是存在有些非常具有挑战性的片段的存在,使得跟踪的结果不是非常的好。如果处理不好,还会导致跟踪的丢失。本文利用 verifiers 将进行这些关键点的处理。

  2. 计算机视觉当中多线程计算已经非常普遍,特别是 SLAM。By splitting tracking and mapping into two parallel threads, PTAM (parallel tracking and mapping) [23] provides one of the most popular SLAM frameworks with many important extensions.

  3. 最近快速、准确的跟踪算法提供了有效的 building blocks,并且鼓励我们去寻找组合的解决方法(呵呵了。。。)

创新点:

  1. we propose to build real-time high accuracy trackers in a novel framework named parallel tracking and verifying (PTAV).

  2. The key idea is : while T needs to run on every frame, V does not. As a general framework, PTAV allows the coordination between the tracker and the verifier: V checks the
tracking results provided by T and sends feedback to V; and V adjusts itself according to the feedback when necessary. By running T and V in parallel, PTAV inherits both the high
efficiency of T and the strong discriminative power of V.

==========  分割线  =========

======== 以上是 PTAV framework 的流程图,也是两个 tracker 和 verifiers 之间互相协助的过程。

PTAV Implementation:

1. Tracking 的过程就是利用了 fDSST 跟踪算法,没啥好说的;但是不同的是, the tracker in this paper,存储了所有的中间结果,since sending out last verification request to ensure fast tracing back.

2. Verifying 是采用了 Siamese network。

  ==>> 当从 tracking 过程中得到的跟踪结果,如果其验证得分低于一个阈值,那么 V 就认为该跟踪结果不可靠,或者说认为已经跟踪失败了。

  此时,V 利用Siamese network,在进行一次检测。具体做法就是利用 region pooling layer 进行一次前传,然后得到许多候选的样本,然后从中选择最好的那个作为检测的结果:

  

  当有了这些检测结果之后,我们在进行一次 check,确认下检测结果是否可信? 其实就是根据检测的置信度和某一阈值进行比较,如果不符合要求,就放大搜索区域,进行再一次的搜索。

  

============================= 算法部分完毕

实验结果:

想想真可怕,作者居然不辞劳苦的跑了四个数据集。。。

论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking的更多相关文章

  1. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  2. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  3. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  4. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  5. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  6. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  7. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  8. 论文笔记:Deeper and Wider Siamese Networks for Real-Time Visual Tracking

    Deeper and Wider Siamese Networks for Real-Time Visual TrackingUpdated on 2019-04-01 16:10:37 Paper ...

  9. 论文笔记:Learning regression and verification networks for long-term visual tracking

    Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Pape ...

随机推荐

  1. GitHub 代码上传

    方法一 登录GitHub后,点击下面的图 New responsitory 按钮 或者点击绿色按钮 New repository,新建一个新建一个远程仓库(remote repository),点击后 ...

  2. Axure RP Extension for Chrome修复

    Axure RP Extension for Chrome安装之前一直用 Firefox 浏览器浏览原型文件,一直用不惯,而且用 Firefox 的唯一目的就是看原型.其他都是用 Chrome 浏览器 ...

  3. centos下搭建Jenkins持续集成环境(安装jenkins)

    1.安装JDK yum install -y java 2.安装jenkins 添加Jenkins库到yum库,Jenkins将从这里下载安装. 1 wget -O /etc/yum.repos.d/ ...

  4. GUI编程实例

    function varargout = GUI013(varargin) % GUI013 MATLAB code for GUI013.fig % GUI013, by itself, creat ...

  5. kali linux DIY

    开启你的kali linux DIY之旅 感谢原博主的分享,真的非常非常受用! 更新源 首先 是kali2016.2更新源的问题,网上找了好久,都不是很满意.后来把kali 2016.2安装到实体机中 ...

  6. Java连接数据库 #02# JDBC经典套路

    内容索引 LocalConnectionFactory.java LocalConnectionProxy.java ProfileDAO.java-2.0 ProfileDAOImpl.java-2 ...

  7. Solr导入MySQL数据之dataimport-handler

    Solr不借助手动JSolr编程情况下也可以将Mysql的数据导入到Solr中.实现方式是安装dataimport-Handler从关系数据库将数据导入到索引库. 1.向SolrCore中加入jar包 ...

  8. Nginx:论高并发,在座各位都是渣渣

    NGINX 在网络应用中表现超群,在于其独特的设计.许多网络或应用服务器大都是基于线程或者进程的简单框架,NGINX突出的地方就在于其成熟的事件驱动框架,它能应对现代硬件上成千上万的并发连接. NGI ...

  9. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  10. 成绩统计程序(Java)

    我的程序: package day20181018;/** * 成绩统计系统 * @author Administrator */import java.util.Scanner;//提供计算机直接扫 ...