P4609 [FJOI2016]建筑师
思路
裸的第一类斯特林数,思路和CF960G相同
预处理组合数和第一类斯特林数回答即可
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const long long MOD= 1e9+7;
long long jc[300],inv[300],n,a,b,S_[50100][210];
long long pow(long long a,long long b){
long long ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans%MOD;
}
long long S(long long n,long long k){
if(k==0&&n==0)
return 1;
if(k==0||n==0)
return 0;
if(S_[n][k]!=-1)
return S_[n][k];
return S_[n][k]=(S(n-1,k-1)%MOD+(n-1)*S(n-1,k)%MOD)%MOD;
}
long long C(long long n,long long m){
return jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
void init(void){
jc[0]=inv[0]=1;
for(int i=1;i<300;i++){
jc[i]=jc[i-1]*i%MOD;
inv[i]=pow(jc[i],MOD-2);
}
}
int T;
signed main(){
memset(S_,-1,sizeof(S_));
init();
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld",&n,&a,&b);
if((!a)||(!b)||a+b-2>n-1){
printf("0\n");
continue;
}
if(n==1){
printf("%lld\n",1);
continue;
}
printf("%lld\n",S(n-1,a+b-2)*C(a+b-2,b-1)%MOD);
}
return 0;
}
P4609 [FJOI2016]建筑师的更多相关文章
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- 【LG4609】[FJOI2016]建筑师
[LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...
- [FJOI2016]建筑师
题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...
随机推荐
- 交替最小二乘ALS
https://www.cnblogs.com/hxsyl/p/5032691.html http://www.cnblogs.com/skyEva/p/5570098.html 1. 基础回顾 矩阵 ...
- CNN那么多的网络有什么区别吗?如何对CNN网络进行修改?
https://www.zhihu.com/question/53727257/answer/136261195 http://blog.csdn.net/csmqq/article/details/ ...
- Palindrome Bo (预处理 + 区间DP)
先进行离散化,然后再预处理出所有位置的下一个元素,做好这一步对时间的优化非常重要. 剩下的就是一般的DP了.区间DP #include<bits/stdc++.h> using names ...
- HashSet, HashTable
HashTable 存储键值对 , Hashtable和Dictionary<TKey,TValue>都是存键值对 HashSet 只存储值,盛放不同的数据,相同的数据只保留一份 Hash ...
- 【Scala学习之二】 Scala 集合 Trait Actor
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- python 内置函数format
Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能. 基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数 ...
- 转:Process类的使用
转载自:http://www.oschina.net/code/snippet_119226_6188 一.根据进程名获取进程的用户名? 需要添加对 System.Management.dll 的引用 ...
- AtCoder Beginner Contest 069 ABCD题
题目链接:http://abc069.contest.atcoder.jp/assignments A - K-City Time limit : 2sec / Memory limit : 256M ...
- [转载] Web Service工作原理及实例
一.Web Service基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求, ...
- tcpdump 抓包工具使用
1. 常用命令 监听p4p1网卡上来自 192.168.162.14 的包 tcpdump -i p4p1 src host 192.168.162.14 tcpdump -i p4p1 dst po ...