P4609 [FJOI2016]建筑师
思路
裸的第一类斯特林数,思路和CF960G相同
预处理组合数和第一类斯特林数回答即可
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const long long MOD= 1e9+7;
long long jc[300],inv[300],n,a,b,S_[50100][210];
long long pow(long long a,long long b){
long long ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans%MOD;
}
long long S(long long n,long long k){
if(k==0&&n==0)
return 1;
if(k==0||n==0)
return 0;
if(S_[n][k]!=-1)
return S_[n][k];
return S_[n][k]=(S(n-1,k-1)%MOD+(n-1)*S(n-1,k)%MOD)%MOD;
}
long long C(long long n,long long m){
return jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
void init(void){
jc[0]=inv[0]=1;
for(int i=1;i<300;i++){
jc[i]=jc[i-1]*i%MOD;
inv[i]=pow(jc[i],MOD-2);
}
}
int T;
signed main(){
memset(S_,-1,sizeof(S_));
init();
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld",&n,&a,&b);
if((!a)||(!b)||a+b-2>n-1){
printf("0\n");
continue;
}
if(n==1){
printf("%lld\n",1);
continue;
}
printf("%lld\n",S(n-1,a+b-2)*C(a+b-2,b-1)%MOD);
}
return 0;
}
P4609 [FJOI2016]建筑师的更多相关文章
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- 【LG4609】[FJOI2016]建筑师
[LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...
- [FJOI2016]建筑师
题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...
随机推荐
- Python pyodbc安装
1)下面这个链接找个适合自己python版本的文件下载下来 https://pypi.org/project/pyodbc/#files 2)放到scripts下面 3) 在scripts路径上输入c ...
- svn安装使用
SVN安装使用 获取项目 1.首先新建文件夹.如:测试项目. 2.接着鼠标右键选择:SVN Checkout/SVN 检出 3.在出行的对话框中输入仓库地址.如:svn://198.021.262/2 ...
- python复习冒泡排序
冒泡排序: 思路: 先找到最大值放到最右边: #encoding=utf-8 a=[1,9,2,8,3,6,4] print "a before change:",a for i ...
- 阿里巴巴 Java 代码规范
1. 抽象类命名使用 Abstratc开头. 2. 阿里强制规定不允许任何魔法值(未经定义的常量)直接出现在代码中.魔法值会让代码的可读性大大降低,而且如果同样的数值多次出现时,容易出现不清楚这些数值 ...
- 实现Winform 跨线程安全访问UI控件
在多线程操作WinForm窗体上的控件时,出现“线程间操作无效:从不是创建控件XXXX的线程访问它”,那是因为默认情况下,在Windows应用程序中,.NET Framework不允许在一个线程中直接 ...
- 新服务器上装java PHP环境有什么一键安装的方便的方法?一般都是怎么安装环境的?
新服务器上装java PHP环境有什么一键安装的方便的方法?一般都是怎么安装环境的? linode digitalocean都有很好的教程,下面是ubuntu和centos的两个教程连接. How ...
- 吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货
吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习. ...
- [转载]Oracle修改用户表所属表空间的步骤
1 .修改表的空间alter table TABLE_NAME move tablespace TABLESPACENAME 查询当前用户下的所有表选择'alter table'|| table_na ...
- Linux账号管理
Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助系统管理员对使用系统的用户进行 ...
- Android屏幕适配全攻略(最权威的官方适配指导)
摘自:http://www.cocoachina.com/android/20151030/13971.html Android屏幕适配出现的原因 在我们学习如何进行屏幕适配之前,我们需要先了解下为什 ...