Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models
Tutorial on GoogleNet based image classification
2018-06-26 15:50:29
本文旨在通过案例来学习 GoogleNet 及其 Inception 结构的定义。针对这种复杂模型的保存以及读取。
1. GoogleNet 的结构:
class Inception(nn.Module):
def __init__(self, in_planes, kernel_1_x, kernel_3_in, kernel_3_x, kernel_5_in, kernel_5_x, pool_planes):
super(Inception, self).__init__()
# 1x1 conv branch
self.b1 = nn.Sequential(
nn.Conv2d(in_planes, kernel_1_x, kernel_size=1),
nn.BatchNorm2d(kernel_1_x),
nn.ReLU(True),
) # 1x1 conv -> 3x3 conv branch
self.b2 = nn.Sequential(
nn.Conv2d(in_planes, kernel_3_in, kernel_size=1),
nn.BatchNorm2d(kernel_3_in),
nn.ReLU(True),
nn.Conv2d(kernel_3_in, kernel_3_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_3_x),
nn.ReLU(True),
) # 1x1 conv -> 5x5 conv branch
self.b3 = nn.Sequential(
nn.Conv2d(in_planes, kernel_5_in, kernel_size=1),
nn.BatchNorm2d(kernel_5_in),
nn.ReLU(True),
nn.Conv2d(kernel_5_in, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
nn.Conv2d(kernel_5_x, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
) # 3x3 pool -> 1x1 conv branch
self.b4 = nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
nn.BatchNorm2d(pool_planes),
nn.ReLU(True),
) def forward(self, x):
y1 = self.b1(x)
y2 = self.b2(x)
y3 = self.b3(x)
y4 = self.b4(x)
return torch.cat([y1,y2,y3,y4], 1)
class GoogLeNet(nn.Module):
def __init__(self):
super(GoogLeNet, self).__init__()
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, 10) def forward(self, x):
x = self.pre_layers(x)
x = self.a3(x)
x = self.b3(x)
x = self.max_pool(x)
x = self.a4(x)
x = self.b4(x)
x = self.c4(x)
x = self.d4(x)
x = self.e4(x)
x = self.max_pool(x)
x = self.a5(x)
x = self.b5(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
2. 保存和加载模型:
# 保存和加载整个模型
torch.save(model_object, 'model.pkl')
model = torch.load('model.pkl') # 仅保存和加载模型参数(推荐使用)
torch.save(model_object.state_dict(), 'params.pkl')
model_object.load_state_dict(torch.load('params.pkl'))
Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models的更多相关文章
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature【枚举二分答案】
https://codeforces.com/contest/1241/problem/C You are an environmental activist at heart but the rea ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature
链接: https://codeforces.com/contest/1241/problem/C 题意: You are an environmental activist at heart but ...
- How to Build Android Applications Based on FFmpeg by An Example
This is a follow up post of the previous blog How to Build FFmpeg for Android. You can read the pre ...
- 解读(GoogLeNet)Going deeper with convolutions
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...
- [论文阅读]Going deeper with convolutions(GoogLeNet)
本文采用的GoogLenet网络(代号Inception)在2014年ImageNet大规模视觉识别挑战赛取得了最好的结果,该网络总共22层. Motivation and High Level Co ...
- Node.js NPM Tutorial: Create, Publish, Extend & Manage
A module in Node.js is a logical encapsulation of code in a single unit. It's always a good programm ...
- Plant Leaves Classification植物叶子分类:基于孪生网络的小样本学习方法
目录 Abstract Introduction PROPOSED CNN STRUCTURE INITIAL CNN ANALYSIS EXPERIMENTAL STRUCTURE AND ALGO ...
随机推荐
- 【Hive学习之四】Hive 案例
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...
- java踩坑
1. java判断两个字符串是否相等用equals 2. java只传递指针遇到的坑: 1 import java.util.*; 2 3 public class mapTest { 4 publi ...
- vc709时钟信号报单端信号错误的记录
话说,为什么我又要跑去搞fpga玩了,不是应该招个有经验的开发人员么?大概是练度不够吧…… Xilinx这个板子阿,真鸡儿贵,我这还没啥基础,慢慢试吧: 看了乱七八糟各种文档先不提,我还是决定先控制L ...
- [转载]ASP.NET页面之间传递值的几种方式
页面传值是学习asp.net初期都会面临的一个问题,总的来说有页面传值.存储对象传值.ajax.类.model.表单等.但是一般来说,常用的较简单有QueryString,Session,Cookie ...
- 一个讲课截屏 清明DAY2
灰常混乱 放弃吧........ 不断做平方差公式 到i时,前面已经求出之前数字的逆元了 r是一个比i小的数 第四行×i,r 的逆元 BSGS 暴力枚举枚举到Φ(m)个
- C++11 正则表达式简单运用
正则表达式(regular expression)是计算机科学中的一个概念,又称规则表达式,通常简写为regex.regexp.RE.regexps.regexes.regexen. 正则表达式是一种 ...
- 怎样从外网访问内网Django?
本地安装了一个Django,只能在局域网内访问,怎样从外网也能访问到本地的Django呢?本文将介绍具体的实现步骤. 准备工作 安装并启动Django 默认安装的Django端口是8000. 实现步骤 ...
- Caused by: java.lang.ClassNotFoundException: Illegal access: this web application instance has been stopped already. Could not load [org.jboss.netty.util.internal.ByteBufferUtil]. The following stack
Caused by: java.lang.ClassNotFoundException: Illegal access: this web application instance has been ...
- 远程图片转化为base64
远程图片转化为base64 <?php /* * * 第一种方法 * 远程图片转化为base64,只支持http(推荐使用) * */ public static function imgUrl ...
- protocol method: #method<channel.close>(reply-code=406, reply-text=PRECONDITION_FAILED - unknown delivery tag 2, class-id=60, method-id=80)
Caused by: com.rabbitmq.client.ShutdownSignalException: channel error; reason: {#method<channel.c ...