Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models
Tutorial on GoogleNet based image classification
2018-06-26 15:50:29
本文旨在通过案例来学习 GoogleNet 及其 Inception 结构的定义。针对这种复杂模型的保存以及读取。
1. GoogleNet 的结构:
class Inception(nn.Module):
def __init__(self, in_planes, kernel_1_x, kernel_3_in, kernel_3_x, kernel_5_in, kernel_5_x, pool_planes):
super(Inception, self).__init__()
# 1x1 conv branch
self.b1 = nn.Sequential(
nn.Conv2d(in_planes, kernel_1_x, kernel_size=1),
nn.BatchNorm2d(kernel_1_x),
nn.ReLU(True),
) # 1x1 conv -> 3x3 conv branch
self.b2 = nn.Sequential(
nn.Conv2d(in_planes, kernel_3_in, kernel_size=1),
nn.BatchNorm2d(kernel_3_in),
nn.ReLU(True),
nn.Conv2d(kernel_3_in, kernel_3_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_3_x),
nn.ReLU(True),
) # 1x1 conv -> 5x5 conv branch
self.b3 = nn.Sequential(
nn.Conv2d(in_planes, kernel_5_in, kernel_size=1),
nn.BatchNorm2d(kernel_5_in),
nn.ReLU(True),
nn.Conv2d(kernel_5_in, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
nn.Conv2d(kernel_5_x, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
) # 3x3 pool -> 1x1 conv branch
self.b4 = nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
nn.BatchNorm2d(pool_planes),
nn.ReLU(True),
) def forward(self, x):
y1 = self.b1(x)
y2 = self.b2(x)
y3 = self.b3(x)
y4 = self.b4(x)
return torch.cat([y1,y2,y3,y4], 1)
class GoogLeNet(nn.Module):
def __init__(self):
super(GoogLeNet, self).__init__()
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, 10) def forward(self, x):
x = self.pre_layers(x)
x = self.a3(x)
x = self.b3(x)
x = self.max_pool(x)
x = self.a4(x)
x = self.b4(x)
x = self.c4(x)
x = self.d4(x)
x = self.e4(x)
x = self.max_pool(x)
x = self.a5(x)
x = self.b5(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
2. 保存和加载模型:
# 保存和加载整个模型
torch.save(model_object, 'model.pkl')
model = torch.load('model.pkl') # 仅保存和加载模型参数(推荐使用)
torch.save(model_object.state_dict(), 'params.pkl')
model_object.load_state_dict(torch.load('params.pkl'))
Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models的更多相关文章
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature【枚举二分答案】
https://codeforces.com/contest/1241/problem/C You are an environmental activist at heart but the rea ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature
链接: https://codeforces.com/contest/1241/problem/C 题意: You are an environmental activist at heart but ...
- How to Build Android Applications Based on FFmpeg by An Example
This is a follow up post of the previous blog How to Build FFmpeg for Android. You can read the pre ...
- 解读(GoogLeNet)Going deeper with convolutions
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...
- [论文阅读]Going deeper with convolutions(GoogLeNet)
本文采用的GoogLenet网络(代号Inception)在2014年ImageNet大规模视觉识别挑战赛取得了最好的结果,该网络总共22层. Motivation and High Level Co ...
- Node.js NPM Tutorial: Create, Publish, Extend & Manage
A module in Node.js is a logical encapsulation of code in a single unit. It's always a good programm ...
- Plant Leaves Classification植物叶子分类:基于孪生网络的小样本学习方法
目录 Abstract Introduction PROPOSED CNN STRUCTURE INITIAL CNN ANALYSIS EXPERIMENTAL STRUCTURE AND ALGO ...
随机推荐
- STL容器之vector
[1]模板类vector 模板类vector可理解为广义数组.广义数组,即与类型无关的数组,具有与数组相同的所有操作. 那么,你或许要问:既然C++语言本身已提供了一个序列式容器array,为什么还要 ...
- Linux基础命令---arping
arping arping指令用于发送arp请求到一个相邻的主机,在指定网卡上发送arp请求指定地址,源地址使用-s指定.该指令可以直径ping MAC地址,找出哪些地址被哪些电脑使用了. 此命令的适 ...
- 51Nod 1212 无向图最小生成树 (路径压缩)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- 使用Fiddler测试WebApi接口
Fiddler是好用的WebApi调试工具之一,它能记录所有客户端和服务器的http和https请求,允许你监视,设置断点,甚至修改输入输出数据,Fiddler 是以代理web服务器的形式工作的,使用 ...
- 清明 DAY2
数论 数论是研究整数性质的东西 也就是 lim π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr b= ...
- APIClound 弹出层 Frame
JS api.openFrame({ name: 'showPic', url: './showPic.html', rect: { // x: api.pageParam.marginBottom, ...
- eclipse 的版本及下载地址
eclipse 的各个版本号: 版本号 代号 代号名 发布日期 Eclipse 3.1 IO 木卫一,伊奥 2005 Eclipse 3.2 Callisto 木卫四,卡里斯托 2006 Eclips ...
- maven 项目 查询部分关心的字段
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...
- Android Camera2 预览,拍照,人脸检测并实时展现
https://www.jianshu.com/p/5414ba2b5508 背景 最近需要做一个人脸检测并实时预览的功能.就是边检测人脸,边在预览界面上框出来. 当然本人并不是专门做 ...
- PHP 变量类型的强制转换 & 创建空对象
PHP 在变量定义中不需要(或不支持)明示的类型定义:变量类型是根据使用该变量的上下文所决定的. 也就是说,如果把一个字符串值赋给变量 var,var 就成了一个字符串.如果又把一个整型值赋给 var ...