problem1 link

将限制按照$x$排序。那么$[upTo_{i}+1,upTo_{i+1}]$中数字个数为$quantity_{i+1}-quantity_{i}$。然后进行动态规划。$f[i][j]$表示考虑了前$i$个区间的限制,其中偶数的个数为$j$时是否成立。

problem2 link

按照如下的规则构造这个图:首先$[1,n]$区间每个节点是单独的一个分量,每次将该区间分为两半。这两半分别需要$k-1$次。最后将这两部分连在一起。

problem3 link

如果出现这样一种情况,就是需要若干种字母去匹配另外若干种字母时,它们一定是多对一或者一对多,而不会出现多对多的情况。

假设字母$a,b,c,d$分别有$3,5,7,1$个。如果$a,b$去匹配$c,d$,不如先让$a,b$匹配一对,$c,d$匹配一对,然后2个$a$,4个$b$去匹配6个$c$。

所以如果前面出现大于一种字母有剩余的话,可以记录最后抵消它们的是哪一种字母即可。

动态规划的方程为$f[i][j][k][t]$表示到第$i$个为止,还剩下$j$个需要与后面的进行配对,其中前面剩余的未参与配对的为$t$个,$k$指示了前面剩余的$j$个是一种还是多种。

code for problem1

#include <algorithm>
#include <string>
#include <vector> class BearFair {
public:
std::string isFair(int n, int b, const std::vector<int> &upTo,
const std::vector<int> &quantity) {
int m = static_cast<int>(upTo.size());
std::vector<std::pair<int, int>> V(m);
for (int i = 0; i < m; ++i) {
V[i] = {upTo[i], quantity[i]};
}
std::sort(V.begin(), V.end());
if (V.back().second > n) {
return "unfair";
} struct node {
int ll, rr, cnt; node() = default;
node(int ll, int rr, int cnt) : ll(ll), rr(rr), cnt(cnt) {}
};
std::vector<node> all; for (int i = 0; i < m; ++i) {
if (0 == i) {
if (V[i].second > V[i].first) {
return "unfair";
}
all.emplace_back(1, V[i].first, V[i].second);
} else {
if (V[i].second < V[i - 1].second ||
(V[i].second - V[i - 1].second > V[i].first - V[i - 1].first) ||
(V[i].second != V[i - 1].second && V[i].first == V[i - 1].first)) {
return "unfair";
}
if (V[i].first != V[i - 1].first) {
all.emplace_back(V[i - 1].first + 1, V[i].first,
V[i].second - V[i - 1].second);
}
}
} if (V.back().first < b) {
all.emplace_back(V.back().first + 1, b, n - V.back().second);
} else if (V.back().second != n) {
return "unfair";
}
if (all.empty()) {
return "fair";
} int M = static_cast<int>(all.size());
std::vector<std::vector<bool>> f(M, std::vector<bool>(n + 1));
for (int i = 0; i <= all[0].cnt && i <= all[0].rr / 2; ++i) {
if (all[0].cnt - i <= all[0].rr - all[0].rr / 2) {
f[0][i] = true;
}
}
for (int i = 1; i < M; ++i) {
int even = all[i].rr / 2 - (all[i].ll - 1) / 2;
int odd = all[i].rr - all[i].ll + 1 - even;
for (int j = 0; j <= n; ++j)
if (f[i - 1][j]) {
for (int k = 0; k <= all[i].cnt && j + k <= n && k <= even; ++k) {
if (all[i].cnt - k <= odd) {
f[i][j + k] = 1;
}
}
}
}
if (f[M - 1][n / 2]) {
return "fair";
}
return "unfair";
}
};

code for problem2

#include <unordered_set>
#include <vector> class BearSpans {
public:
std::vector<int> findAnyGraph(int n, int m, int k) {
this->n = n;
this->m = m;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
all_edges.insert(i * n + j);
}
}
if (!Dfs(0, n - 1, k)) {
return {-1};
}
while (index < m) {
auto p = *all_edges.begin();
Add(p / n, p % n);
all_edges.erase(p);
++index;
}
return result;
} private:
bool Dfs(int L, int R, int k) {
if (k == 1) {
for (int i = L + 1; i <= R; ++i) {
Add(L, i);
++index;
}
return true;
} if (L + 1 == R) {
if (k != 1) {
return false;
}
Add(L, R);
++index;
return true;
}
if (R - L + 1 == 3) {
return false;
}
int M = (L + R) >> 1;
if (!Dfs(L, M, k - 1) || !Dfs(M + 1, R, k - 1)) {
return false;
}
Add(L, R);
++index;
return true;
} void Add(int u, int v) {
result.push_back(u + 1);
result.push_back(v + 1);
all_edges.erase(u * n + v);
}
int n;
int m;
std::unordered_set<int> all_edges;
std::vector<int> result;
int index = 0;
};

code for problem3

#include <limits>
#include <string>
#include <vector> constexpr int kMaxN = 2500;
constexpr int kMaxType = 6;
constexpr int kInfinite = std::numeric_limits<int>::max(); int f[2][kMaxN][kMaxType * 2][kMaxType + 1]; class BearPairs {
public:
int minCost(const std::string &s, const std::vector<int> &cost, int m) {
int n = static_cast<int>(s.size());
auto Clear = [&](int t) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < kMaxType * 2; ++j) {
for (int k = 0; k <= m; ++k) {
f[t][i][j][k] = kInfinite;
}
}
}
};
auto Update = [&](int &x, int y) {
if (x > y) {
x = y;
}
};
Clear(0);
f[0][0][0][1] = 0;
f[0][1][s[0] - 'a'][0] = cost[0];
int pre = 0;
int cur = 1;
for (int i = 1; i < n; ++i) {
Clear(cur);
for (int j = 0; j <= i; ++j) {
for (int k = 0; k < kMaxType * 2; ++k) {
for (int t = 0; t <= m; ++t) {
int c0 = f[pre][j][k][t];
if (c0 == kInfinite) {
continue;
}
int c1 = c0 + cost[i] + 100 * i;
int c2 = c0 + cost[i] - 100 * i;
int v = s[i] - 'a';
if (t < m) {
Update(f[cur][j][k][t + 1], c0);
}
if (j == 0) {
Update(f[cur][1][v][t], c2);
} else if (k < kMaxType) {
if (v == k) {
Update(f[cur][j + 1][v][t], c2);
} else {
Update(f[cur][j - 1][k][t], c1);
for (int other = 0; other < kMaxType; ++other) {
if (other != v && other != k) {
Update(f[cur][j + 1][kMaxType + other][t], c2);
}
}
}
} else {
if (v + kMaxType == k) {
Update(f[cur][j - 1][k][t], c1);
} else {
Update(f[cur][j + 1][k][t], c2);
}
}
}
}
}
pre ^= 1;
cur ^= 1;
}
int result = kInfinite;
for (int k = 0; k < kMaxType * 2; ++k) {
result = std::min(result, f[pre][0][k][m]);
}
if (result == kInfinite) {
return -1;
}
return result;
}
};

topcoder srm 680 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. vuex的使用二

    1.先看项目的目录结构 2.在main.js里需要引入store这个文件并挂在实例上 import store from './store/store' ............ new Vue({ ...

  2. LeetCode21.合并两个有序链表

    将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出:1->1->2- ...

  3. Excel的导入导出功能

    POI组件的详细介绍文档: https://www.cnblogs.com/huajiezh/p/5467821.html .xls 对应 HSSFWorkbook book=new HSSFWork ...

  4. <1>lua编译环境 数据类型和局部变量

    1.编译环境 http://www.lua.org/download.html下载 解压后 bin目录中lua.exe运行   luac.exe编译成lua字节码 2.基本数据类型 整数,小数,布尔值 ...

  5. Windows server 2008 R2实现多用户远程连接 (转)

    经常使用远程桌面的朋友可能会注意到,Windows server 2008 R2中,远程桌面最多只允许两个人远程连接,第三个人就无法连接过去,但是生产环境中有一些服务器可能有许多人需要连接上去,而微软 ...

  6. UIView常见方法

    - (void)addSubview:(UIView *)view; 添加一个子控件view   - (void)removeFromSuperview; 从父控件中移除 - (UIView *)vi ...

  7. 从零开始学习cocoStudio(1)--cocoStudio是什么?

    一.cocoStudio是什么? CocoStudio是一套专业的永久免费的游戏开发工具集,帮助开发者快速创建游戏资源,将大部分繁琐的游戏开发工作使用编辑器来快速制作,CocoStudio包含了游戏开 ...

  8. MySql 存储过程 光标只循环一次

    [1]MqSql 存储过程 光标只循环一次 针对MySql存储过程,光标只循环一次就退出的场景,可能原因分析: (1)存储过程有问题(仔细检查语法.控制变量.条件等等) (2)保证存储过程正确.调用过 ...

  9. 通过Hive将数据写入到ElasticSearch

    我在<使用Hive读取ElasticSearch中的数据>文章中介绍了如何使用Hive读取ElasticSearch中的数据,本文将接着上文继续介绍如何使用Hive将数据写入到Elasti ...

  10. Linux基础命令---arping

    arping arping指令用于发送arp请求到一个相邻的主机,在指定网卡上发送arp请求指定地址,源地址使用-s指定.该指令可以直径ping MAC地址,找出哪些地址被哪些电脑使用了. 此命令的适 ...