Problem Statement

     There is a country with n cities, numbered 0 through n-1. City 0 is the capital. The road network in the country forms an undirected connected graph. In other words: Some pairs of cities are connected by bidirectional roads. For every city there is at least one sequence of consecutive roads that leads from the city to the capital. (Whenever two roads need to cross outside of a city, the crossing is done using a bridge, so there are no intersections outside of the cities.) You are given a String[] linked that describes the road network. For each i and j, linked[i][j] is 'Y' if the cities i and j are already connected by a direct road, and it is 'N' otherwise. The distance between two cities is the smallest number of roads one needs to travel to get from one city to the other. The people living outside of the capital are usually unhappy about their distance from the capital. You are also given a int[] want with n elements. For each i, want[i] is the desired distance between city i and the capital (city 0). Fox Ciel is in charge of building new roads. Each new road must again be bidirectional and connect two cities. Once the new roads are built, the citizens will evaluate how unhappy they are with the resulting road network: For each i: Let real[i] be the new distance between city i and the capital. Then the people in city i increase the unhappiness of the country by (want[i] - real[i])^2. Return the minimal total unhappiness Ciel can achieve by building some (possibly zero) new roads.

题目大意:给定n个点的无向图,边权均为1,每个点有一个属性wi,现在可以在图中任意加边,记加边后每个点到1号点的距离为di,最小化Σ(wi - di)^2.

样例:

Sample Input

3

NYN

YNY

NYN

0 1 1

4

NYNN

YNYN

NYNY

NNYN

0 3 3 3

6

NYNNNY

YNYNNN

NYNYNN

NNYNYN

NNNYNY

YNNNYN

0 2 2 2 2 2

3

NYY

YNN

YNN

0 0 0

6

NYNNNN

YNYNNN

NYNYYY

NNYNYY

NNYYNY

NNYYYN

0 1 2 3 0 3

6

NYNNNN

YNYNNN

NYNYYY

NNYNYY

NNYYNY

NNYYYN

0 1 2 4 0 4

11

NYNYYYYYYYY

YNYNNYYNYYY

NYNNNYYNYYN

YNNNYYYYYYY

YNNYNYYYNYY

YYYYYNNYYNY

YYYYYNNNYYY

YNNYYYNNNYY

YYYYNYYNNNY

YYYYYNYYNNY

YYNYYYYYYYN

0 1 2 0 0 5 1 3 0 2 3

Sample Output

0

5

2

3

6

28

分析:综合了许多知识的好题.

   题目说可以任意加边,那么是不是就意味着每个点的最短路都是任意的呢? 显然不是的,考虑确定每个点的最短路有什么限制.

   首先,d1 = 0.  然后对于任意有边的一对点(i,j),|di - dj| ≤ 1. 现在要求满足上述限制的最值.

   这其实就是个离散变量模型,和bzoj3144类似. 先拆点,S向i号点拆出的0号点连容量为inf的边,i号点拆出的n-1号点向T连容量为inf的边. i号点拆出的k号点向k+1号点连容量为(a[i] - k - 1) ^ 2的边.

   对于有限制的点对(i,j),i拆出的第k个点向j拆出的第k-1个点连容量为inf的边,j连i也同样如此.

   还没完.必须保证d1 = 0.那么1拆出的第k个点向第k+1个点的边就不能被割. 将其容量变成inf就好了. 但是这样会存在一个问题:ST总是连通的. 因为S到T总是可以经过1号点拆出的点,这条路径上的每条边的容量都是inf,割不掉.

   怎么解决呢?去掉S与1号点拆出的第一个点的连边就好了.

   不断调整,满足最小割的要求,同时使得答案合理,这是最小割模型建图的一般分析方法.

   同时这道题融合了最短路问题的一些技巧,例如hdu5385,每个点到源点的最短路都和与它相连的点的最短路有关.

#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 0x7fffffff;
int n,a[],id[][],cnt,head[maxn],to[maxn],nextt[maxn],w[maxn],tot = ;
int d[maxn],S,T,ans;
char s[][]; void add(int x,int y,int z)
{
w[tot] = z;
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++; w[tot] = ;
to[tot] = x;
nextt[tot] = head[y];
head[y] = tot++;
} bool bfs()
{
memset(d,-,sizeof(d));
d[S] = ;
queue <int> q;
q.push(S);
while (!q.empty())
{
int u = q.front();
q.pop();
if (u == T)
return true;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == -)
{
d[v] = d[u] + ;
q.push(v);
}
}
}
return false;
} int dfs(int u,int f)
{
if (u == T)
return f;
int res = ;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == d[u] + )
{
int temp = dfs(v,min(f - res,w[i]));
w[i] -= temp;
w[i ^ ] += temp;
res += temp;
if (res == f)
return res;
}
}
if (!res)
d[u] = -;
return res;
} void dinic()
{
while(bfs())
ans += dfs(S,inf);
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%s",s[i] + );
for (int k = ; k <= n - ; k++)
for (int i = ; i <= n; i++)
id[i][k] = ++cnt;
S = cnt + ;
T = S + ;
add(id[][n - ],T,inf);
for (int i = ; i <= n; i++)
add(S,id[i][],inf),add(id[i][n - ],T,inf);
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
if (s[i][j] == 'Y')
{
for (int k = ; k <= n - ; k++)
add(id[i][k],id[j][k - ],inf);
}
}
for (int i = ; i <= n; i++)
{
int x;
scanf("%d",&x);
for (int j = ; j <= n - ; j++)
add(id[i][j],id[i][j + ],(i == ? inf : (x - j - ) * (x - j - )));
}
dinic();
printf("%d\n",ans); return ;
}

Topcoder SRM590 Fox And City的更多相关文章

  1. Topcoder SRM 590 Fox And City

    Link 注意到原图给的是一个无向连通图. 如果在原图中两点之间有一条无向边,那么这两点到\(1\)的距离之差不大于\(1\). 这个命题的正确性是显然的,我们考虑它的逆命题: 给定每个点到\(1\) ...

  2. HDU.5385.The path(构造)

    题目链接 最短路构造题三连:这道题,HDU4903,SRM590 Fox And City. \(Description\) 给定一张\(n\)个点\(m\)条边的有向图,每条边的边权在\([1,n] ...

  3. 未A,或用水法,或不熟的题

    今天是2017.11.25 1. 用栈实现dfs JZOJ_senior 3467 2. 链表加堆或线段树乱搞 JZOJ_senior 3480 3. 求每个边所在的奇环.偶环 JZOJ_senior ...

  4. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  5. Topcoder 练习小记,Java 与 Python 分别实现。

    Topcoder上的一道题目,题目描述如下: Problem Statement      Byteland is a city with many skyscrapers, so it's a pe ...

  6. [TopCoder] SRM_594_DIV2.250

    好长一段时间没写博客了,实在是想不出有什么好写的.近期也有对自己的职业做了一点思考,还是整理不出个所以然来,很是烦躁 ... 研究TopCoder已经有一小段时间了,都是在做之前的题目,还没有实际参加 ...

  7. TopCoder入门

    TopCoder入门 http://acmicpc.info/archives/164?tdsourcetag=s_pctim_aiomsg 本文根据经典的TC教程完善和改编.TopCoder:htt ...

  8. BZOJ 2001: [Hnoi2010]City 城市建设

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1132  Solved: 555[Submit][ ...

  9. History lives on in this distinguished Polish city II 2017/1/5

    原文 Some fresh air After your time underground,you can return to ground level or maybe even a little ...

随机推荐

  1. GCC的符号可见性——解决多个库同名符号冲突问题

    引用自:https://github.com/wwbmmm/blog/wiki/gcc_visibility 问题 最近项目遇到一些问题,场景如下 主程序依赖了两个库libA的funcA函数和libB ...

  2. box-cox 转换

    box-cox 由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布. Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性 ...

  3. MVC 带扩展名的路由无法访问

    在MVC中,路由是必不可少的,而且MVC对Url的重写非常方便,只需要在路由中配置相应的规则即可.假如我们需要给信息详情页配置路由,代码如下: routes.MapRoute( name: " ...

  4. Android ImageView 的scaleType 属性图解

    ImageView 是 Android 中最常用的控件之一,而在使用ImageView时,必不可少的会使用到它的scaleType属性.该属性指定了你想让ImageView如何显示图片,包括是否进行缩 ...

  5. CSS三:CSS的三种引入方式

    CSS的引入方式共有三种:行内样式.内部样式表.外部样式表. 一.行内样式 使用style属性引入CSS样式. 示例:<h1 style="color:red;">st ...

  6. 保存 laravel model 而不更新 timestamps 的方法

    $product = Product::find(1); $product->view_count += 1; $product->timestamps = false; $product ...

  7. PHP 抽象类

    * 抽象类 * 1.使用关键字: abstract * 2.类中只要有一个方法声明为abstract抽象方法,那么这个类就必须声明为抽象类 * 3.抽象方法只允许有方法声明与参数列表,不允许有方法体; ...

  8. ssh批量执行命令-paramiko

    ---恢复内容开始--- # python3.5 + paramiko # pip 是python的包管理工具,在shell里执行如下命令安装paramoko模块 # pip install para ...

  9. 2017-2018-2 20155309南皓芯 Exp6 信息搜集与漏洞扫描

    实践内容 1.各种搜索技巧的应用 2.DNS IP注册信息的查询 3.基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点 4.漏洞扫描:会扫,会看报告,会查漏洞说明,会修补漏洞 基 ...

  10. 2018-2019-2 网络对抗技术 20165333 Exp2 后门原理与实践

    实验内容 1.使用netcat获取主机操作Shell,cron启动 2.使用socat获取主机操作Shell, 任务计划启动 3.使用MSF meterpreter(或其他软件)生成可执行文件,利用n ...