题目链接

\(Description\)

给你一张有向图及一条\(1\)到\(n\)的最短路。对这条最短路上的每条边,求删掉这条边后\(1\)到\(n\)的最短路是多少。

\(Solution\)

枚举删每条边然后求最短路显然不行。考虑怎么保留之前求最短路的一些信息。

考虑删掉一条边后的最短路,\(1\)沿最短路到了某个点\(x\),然后如果\(x\)到了最短路上的某点\(y\),之后一定是沿\(y\)到\(n\)的最短路走到\(n\)。

\(n\)也是最短路上的点,即\(x\)一定会到达某个\(y\)并沿最短路到达\(n\)。这时就可以在\(y\)处直接更新\(Ans\)。

我们发现在\(y\)处的值可以更新所有\(y\)之前最短路的边的\(Ans\)。

我们用堆把这个值及\(y\)前面那条最短路的边的标号\(id\)存下来。如果当前删的边\(i\)大于等于堆顶的\(id\),就可以直接用堆顶的答案了。否则直接\(pop\)掉堆顶。

所以我们把所有最短路边删掉,每求完一条边\((u,v)\)的值时更新\(dis[v]\),然后把\(v\)再加入队列SPFA就行了。

每次SPFA不需要清空\(dis\),\(dis\)是递减的。

当然本题复杂度玄学。

//18720kb	3244ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5,M=2e5+5; int Enum,H[N],nxt[M],fr[M],to[M],len[M],dis[N],dt[N],A[N],pre[N];
bool ban[M];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node
{
int pos,val;
bool operator <(const Node &x)const
{
return val>x.val;
}
};
std::priority_queue<Node> hp; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int w,int v,int u)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
}
void SPFA(int s)
{
static bool inq[N];
static std::queue<int> q;
q.push(s);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(!ban[i]&&dis[v=to[i]]>dis[x]+len[i])
{
dis[v]=dis[x]+len[i];
if(pre[v]) hp.push((Node){pre[v],dis[v]+dt[pre[v]]});
else if(!inq[v]) inq[v]=1, q.push(v);
}
}
} int main()
{
int n=read(),m=read(),l=read();
for(int i=1; i<=m; ++i) AE(read(),read(),read());
for(int i=1,id; i<=l; ++i)
{
A[i]=id=read();
ban[id]=1, pre[to[id]]=i;
}
for(int i=l-1; i; --i) dt[i]=dt[i+1]+len[A[i+1]]; memset(dis,0x3f,sizeof dis);
dis[1]=0, SPFA(1);
for(int i=1,id; i<=l; ++i)
{
while(!hp.empty()&&hp.top().pos<i) hp.pop();
if(hp.empty()) puts("-1");
else printf("%d\n",hp.top().val);
id=A[i], dis[to[id]]=dis[fr[id]]+len[id];
SPFA(to[id]);
} return 0;
}

BZOJ.3575.[HNOI2014]道路堵塞(最短路 动态SPFA)的更多相关文章

  1. bzoj 3575: [Hnoi2014]道路堵塞

    Description A 国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径, 并且保证这条路径的长度是所 ...

  2. 【BZOJ】3575: [Hnoi2014]道路堵塞

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3575 大概的做法是,按照顺序枚举每一条要删去的边,(假设当前点为$u$,在最短路径上的下一 ...

  3. [HNOI2014] 道路堵塞 - 最短路,线段树

    对不起对不起,辣鸡蒟蒻又来用核弹打蚊子了 完全ignore了题目给出的最短路,手工搞出一个最短路,发现对答案没什么影响 所以干脆转化为经典问题:每次询问删掉一条边后的最短路 如果删掉的是非最短路边,那 ...

  4. 动态删边SPFA: [HNOI2014]道路堵塞

    [HNOI2014]道路堵塞 题目描述 $A$ 国有 $N$座城市,依次标为$1$到$N$.同时,在这$N$座城市间有$M$条单向道路,每条道路的长度是一个正整数.现在,$A$国交通部指定了一条从城市 ...

  5. 洛谷 [HNOI2014]道路堵塞 解题报告

    [HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...

  6. bzoj3575[Hnoi2014]道路堵塞

    http://www.lydsy.com/JudgeOnline/problem.php?id=3575 总赶脚第二题总是比第三题难...... 好吧,这题一点思路都没有 听说用民科可以过掉大部分数据 ...

  7. [HNOI2014]道路堵塞

    题目描述 A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有从城市1到城市N ...

  8. 【bzoj3575】 Hnoi2014—道路堵塞

    http://www.lydsy.com/JudgeOnline/problem.php?id=3575 (题目链接) 题意 给出一个有向图和一条最短路,问最短路上任意一条边断掉,此时的最短路是多少. ...

  9. luogu P3238 [HNOI2014]道路堵塞

    传送门 这什么题啊,乱搞就算了,不知道SPFA已经死了吗 不对那个时候好像还没死 暴力就是删掉边后跑Dijkstra SPFA 然后稍微分析一下,可以发现题目中要求的不经过最短路某条边的路径,一定是先 ...

随机推荐

  1. 六、regularized logisitic regssion练习(转载)

    转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/17/2964858.html 在上一讲Deep learning:五(regulari ...

  2. C# 汉字与区位码之间的相互转换(中文数字字母可以,支持空格,但是特殊字符未来得及测试)

    using System; using System.Text; namespace Test { class MainClass { /// <summary> /// 中文空白字符,用 ...

  3. uoj#188. 【UR #13】Sanrd(Min_25筛)

    题面 传送门 题解 这是一道语文题 不难看出,题目所求即为\(l\)到\(r\)中每个数的次大质因子 我们考虑\(Min\_25\)筛的过程,设 \[S(n,j)=\sum_{i=1}^nsec_p( ...

  4. zabbix系列(十)zabbix添加对zookeeper集群的监控

    1.应用场景描述 在目前公司的业务中,有部分ESB架构用ZooKeeper作为协同服务的场景,做好ZooKeeper的监控很重要. 2.ZooKeeper监控要点 系统监控 内存使用量    ZooK ...

  5. jmeter之ip欺骗

    说明:我看有的博客说官方文档是在jmeter2.5以上的版本有此功能的实现~ 我的是2.13版本,也可以实现 . 准备工作: 使用IP欺骗功能必须得本地有多个可用IP,通常普通的PC机只有一个物理网卡 ...

  6. mac安装navicat mysql破解版

    下载破解中文版http://m6.pc6.com/xuh6/navicat12027pre.zip 完成下载后无法正常进行安装,此时应该打开命令行执行 sudo spctl --master-disa ...

  7. Fiddler抓包11-HTTPS证书Actions无法导出问题

    前言 在点Actions时候出现Export Failed:The root certificate could not be located.最近有很多小伙伴在fiddler导出证书的时候,遇到无法 ...

  8. myEclipse开发内存溢出解决办法myEclipse调整jvm内存大小java.lang.OutOfMemoryError: PermGen space及其解决方法

    摘要: tomcat部署多个项目后,启动tomcat正常,访问项目时却会出现该错误在网上查了查又试了好几次,才解决,将解决方法记录下来,以方便以后查看或让遇到同样问题的朋友有个参考 PermGen s ...

  9. #10 [AH2017/HNOI2017]大佬

    题解: 题意看上去挺复杂的 分析一下就能发现自己的自信是没啥用的 只要随便dp一下看看最多能有多少天不使用增加自信 然后问题就变成了 求C1+C2+k=C 然后发现C有10^8 显然枚举C1是不行的了 ...

  10. python学习之基础语法

    一.缩进 学习 Python 与其他语言最大的区别就是,Python 的代码块不使用大括号 {} 来控制类,函数以及其他逻辑判断.python 最具特色的就是用缩进来写模块. 缩进的空白数量是可变的, ...