BZOJ.3575.[HNOI2014]道路堵塞(最短路 动态SPFA)
\(Description\)
给你一张有向图及一条\(1\)到\(n\)的最短路。对这条最短路上的每条边,求删掉这条边后\(1\)到\(n\)的最短路是多少。
\(Solution\)
枚举删每条边然后求最短路显然不行。考虑怎么保留之前求最短路的一些信息。
考虑删掉一条边后的最短路,\(1\)沿最短路到了某个点\(x\),然后如果\(x\)到了最短路上的某点\(y\),之后一定是沿\(y\)到\(n\)的最短路走到\(n\)。
\(n\)也是最短路上的点,即\(x\)一定会到达某个\(y\)并沿最短路到达\(n\)。这时就可以在\(y\)处直接更新\(Ans\)。
我们发现在\(y\)处的值可以更新所有\(y\)之前最短路的边的\(Ans\)。
我们用堆把这个值及\(y\)前面那条最短路的边的标号\(id\)存下来。如果当前删的边\(i\)大于等于堆顶的\(id\),就可以直接用堆顶的答案了。否则直接\(pop\)掉堆顶。
所以我们把所有最短路边删掉,每求完一条边\((u,v)\)的值时更新\(dis[v]\),然后把\(v\)再加入队列SPFA就行了。
每次SPFA不需要清空\(dis\),\(dis\)是递减的。
当然本题复杂度玄学。
//18720kb 3244ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5,M=2e5+5;
int Enum,H[N],nxt[M],fr[M],to[M],len[M],dis[N],dt[N],A[N],pre[N];
bool ban[M];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node
{
int pos,val;
bool operator <(const Node &x)const
{
return val>x.val;
}
};
std::priority_queue<Node> hp;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int w,int v,int u)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
}
void SPFA(int s)
{
static bool inq[N];
static std::queue<int> q;
q.push(s);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(!ban[i]&&dis[v=to[i]]>dis[x]+len[i])
{
dis[v]=dis[x]+len[i];
if(pre[v]) hp.push((Node){pre[v],dis[v]+dt[pre[v]]});
else if(!inq[v]) inq[v]=1, q.push(v);
}
}
}
int main()
{
int n=read(),m=read(),l=read();
for(int i=1; i<=m; ++i) AE(read(),read(),read());
for(int i=1,id; i<=l; ++i)
{
A[i]=id=read();
ban[id]=1, pre[to[id]]=i;
}
for(int i=l-1; i; --i) dt[i]=dt[i+1]+len[A[i+1]];
memset(dis,0x3f,sizeof dis);
dis[1]=0, SPFA(1);
for(int i=1,id; i<=l; ++i)
{
while(!hp.empty()&&hp.top().pos<i) hp.pop();
if(hp.empty()) puts("-1");
else printf("%d\n",hp.top().val);
id=A[i], dis[to[id]]=dis[fr[id]]+len[id];
SPFA(to[id]);
}
return 0;
}
BZOJ.3575.[HNOI2014]道路堵塞(最短路 动态SPFA)的更多相关文章
- bzoj 3575: [Hnoi2014]道路堵塞
Description A 国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径, 并且保证这条路径的长度是所 ...
- 【BZOJ】3575: [Hnoi2014]道路堵塞
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3575 大概的做法是,按照顺序枚举每一条要删去的边,(假设当前点为$u$,在最短路径上的下一 ...
- [HNOI2014] 道路堵塞 - 最短路,线段树
对不起对不起,辣鸡蒟蒻又来用核弹打蚊子了 完全ignore了题目给出的最短路,手工搞出一个最短路,发现对答案没什么影响 所以干脆转化为经典问题:每次询问删掉一条边后的最短路 如果删掉的是非最短路边,那 ...
- 动态删边SPFA: [HNOI2014]道路堵塞
[HNOI2014]道路堵塞 题目描述 $A$ 国有 $N$座城市,依次标为$1$到$N$.同时,在这$N$座城市间有$M$条单向道路,每条道路的长度是一个正整数.现在,$A$国交通部指定了一条从城市 ...
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
- bzoj3575[Hnoi2014]道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 总赶脚第二题总是比第三题难...... 好吧,这题一点思路都没有 听说用民科可以过掉大部分数据 ...
- [HNOI2014]道路堵塞
题目描述 A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有从城市1到城市N ...
- 【bzoj3575】 Hnoi2014—道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 (题目链接) 题意 给出一个有向图和一条最短路,问最短路上任意一条边断掉,此时的最短路是多少. ...
- luogu P3238 [HNOI2014]道路堵塞
传送门 这什么题啊,乱搞就算了,不知道SPFA已经死了吗 不对那个时候好像还没死 暴力就是删掉边后跑Dijkstra SPFA 然后稍微分析一下,可以发现题目中要求的不经过最短路某条边的路径,一定是先 ...
随机推荐
- 【Mysql sql inject】【入门篇】sqli-labs使用 part 3【15-17】
Less-15- Blind- Boolian Based- String 1)工具用法: sqlmap -u --batch --technique BEST 2)手工注入 时间盲注放弃用手工了 ...
- windows环境用python修改环境变量的注意点(含代码)
1.部分环境变量字段需要保留原来的值,只是做添加,不可以替换 2.Path和PATH对于python来说是一样的,也就是说存在名为Path的环境变量时,添加PATH的环境变量,会覆盖原有的Path环境 ...
- openstack 安全策略权限控制等api接口
computer API: 创建安全组 /os-security-groups 创建安全组规则 /os-security-group-default-rules Netw ...
- 默认以管理员身份运行VS2013/15/17
方法如下: 1.右击VS的快捷方式,选择[属性],打开属性对话框,再点击[高级]按钮,如下图所示: 2.再勾选[用管理员身份运行],点击[确定]即可: 然后就可以双击VS快捷方式,直接以管理员身份运行 ...
- mysql重置登录密码
1.停止mysql服务. services.msc进入服务界面 停止mysql服务 2.打开一个cmd窗口. 输入mysqld --skip-grant-tables 启动了一个新的mysql服务 跳 ...
- 使用python命令构建最简单的web服务
可以使用python自带的包建立最简单的web服务器,使用方法: 1)切换到服务器的根目录下 2)输入命令: python -m SimpleHTTPServer 3)使用wget或者在浏览器访问测试 ...
- React-Native 之 项目实战(一)
前言 本文有配套视频,可以酌情观看. 文中内容因各人理解不同,可能会有所偏差,欢迎朋友们联系我. 文中所有内容仅供学习交流之用,不可用于商业用途,如因此引起的相关法律法规责任,与我无关. 如文中内容对 ...
- 利用mysqltuner工具对mysql数据库进行优化
mysqltuner工具使用,本工具建议定期运行,发现目前MYSQL数据库存在的问题及修改相关的参数 工具的下载及部署 解决环境依赖,因为工具是perl脚本开发的,需要perl脚本环境 # yun i ...
- 脚本检测CDN节点资源是否与源站资源一致
需求: 1.所有要检测的资源url放到一个单独文件中 2.检测cdn节点资源大小与源站文件大小是否一致 3.随机抽查几个资源,检查md5sum是否一致 4.使用多线程,可配置线程数 代码目录: hex ...
- Android Menu用法全面讲解
说明:本文只介绍Android3.0及以上的Menu知识点. 菜单的分类 菜单是Android应用中非常重要且常见的组成部分,主要可以分为三类:选项菜单.上下文菜单/上下文操作模式以及弹出菜单.它们的 ...