题目大意:

给定一棵\(n(n\le3000)\)个点的带边权的树,找出\(k\)个点\(A_{1\sim k}\)使得\(\sum_{1\le i<k} dis(A_i,A_i+1)\)最小。求最小值。

思路:

\(k\)个点一定是一个连通块,而且答案就是这个联通块边权和\(\times 2-\)直径。

树形DP。\(f[i][j][k]\)表示以\(i\)为根的子树,选了\(j\)个边,直径有\(k\)个端点已经确定。

时间复杂度\(\mathcal O(n^2)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=3001;
struct Edge {
int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
inline void upd(int &a,const int &b) {
a=std::min(a,b);
}
int size[N],f[N][N][3];
void dfs(const int &x,const int &par) {
size[x]=1;
f[x][0][0]=f[x][0][1]=0;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(y==par) continue;
dfs(y,x);
for(register int i=size[x]-1;i>=0;i--) {
for(register int j=size[y]-1;j>=0;j--) {
upd(f[x][i+j+1][0],f[x][i][0]+f[y][j][0]+w*2);
upd(f[x][i+j+1][1],f[x][i][0]+f[y][j][1]+w);
upd(f[x][i+j+1][1],f[x][i][1]+f[y][j][0]+w*2);
upd(f[x][i+j+1][2],f[x][i][0]+f[y][j][2]+w*2);
upd(f[x][i+j+1][2],f[x][i][1]+f[y][j][1]+w);
upd(f[x][i+j+1][2],f[x][i][2]+f[y][j][0]+w*2);
}
}
size[x]+=size[y];
}
}
int main() {
memset(f,0x3f,sizeof f);
const int n=getint(),k=getint();
for(register int i=1;i<n;i++) {
const int u=getint(),v=getint();
add_edge(u,v,getint());
}
dfs(1,0);
int ans=INT_MAX;
for(register int i=1;i<=n;i++) {
upd(ans,f[i][k-1][2]);
}
printf("%d\n",ans);
return 0;
}

[BZOJ4987]Tree的更多相关文章

  1. BZOJ4987:Tree(树形DP)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  2. bzoj4987: Tree(树形dp)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小.   Input 第一行两个正整数n,k,表示数的顶点数和 ...

  3. bzoj4987 Tree 树上背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4987 题解 一道还不错的题咯. 很容易发现一个结论:这 \(k\) 个点构成的一定是一个连通块 ...

  4. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  5. BZOJ4987:Tree (树形DP)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  6. 【bzoj4987】Tree 树形dp

    Description 从前有棵树. 找出K个点A1,A2,-,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  7. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  8. [bzoj4987]Tree_树形dp

    Tree bzoj-4987 题目大意:给定一颗n个点的有边权的树,选出k个点,使得:$\sum\limits_{i=1}^{k-1}dis_idis_j$最小. 注释:$1\le n\le 3000 ...

  9. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

随机推荐

  1. GPIO接口解析【转】

    本文提供了一个linux下访问GPIO的约定的概述. 这些调用使用gpio_* 命名前缀.没有别的调用会使用这个前缀或是相关的__gpio_*前缀. 转自:http://blog.163.com/w5 ...

  2. Tengine HTTPS原理解析、实践与调试【转】

    本文邀请阿里云CDN HTTPS技术专家金九,分享Tengine的一些HTTPS实践经验.内容主要有四个方面:HTTPS趋势.HTTPS基础.HTTPS实践.HTTPS调试. 一.HTTPS趋势 这一 ...

  3. System.Runtime.InteropServices.COMException (0x800A03EC): 无法访问文件

    使用Microsoft.Office.Interop.Excel 操作 今天在服务器部署,操作程序csv文件转xsl文件的时候,遇到一下问题: System.Runtime.InteropServic ...

  4. React-Native 之 项目实战(一)

    前言 本文有配套视频,可以酌情观看. 文中内容因各人理解不同,可能会有所偏差,欢迎朋友们联系我. 文中所有内容仅供学习交流之用,不可用于商业用途,如因此引起的相关法律法规责任,与我无关. 如文中内容对 ...

  5. 【 总结 】Tcp Keepalive 和 HTTP Keepalive 详解

    TCP Keepalive Tcp keepalive的起源          双方建立交互的连接,但是并不是一直存在数据交互,有些连接会在数据交互完毕后,主动释放连接,而有些不会,那么在长时间无数据 ...

  6. Annoy 近邻算法

    Annoy 随机选择两个点,以这两个节点为初始中心节点,执行聚类数为2的kmeans过程,最终产生收敛后两个聚类中心点 二叉树底层是叶子节点记录原始数据节点,其他中间节点记录的是分割超平面的信息 但是 ...

  7. Win7 x64 svn 服务器搭建

    SVN服务器搭建和使用   Subversion是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说. 首先来下载和搭建SVN服务器. 现在Subversion已经迁移到apache网站上了 ...

  8. OI中坑点总结

    以下是我个人OI生涯中遇到的坑点的一个小总结,可能是我太菜了,总是掉坑里,请大佬勿喷 1,多重背包的转移的循环顺序 //默认每个物品体积为一(不想打码……) //dp[i]表示占用背包容量i所能获得的 ...

  9. Java 变量、循环、判断

    粗糙笔记不喜勿喷 Java 8大基本类型 第一类:逻辑型(boolean) 1.boolean类型只存在true(真),false(假)两种形式 例: boolean a=true; boolean ...

  10. Math对象的常用属性和方法

    属性 描述 Math.PI 返回π(3.1415926) 方法 描述 Math.round() 将数字四舍五入到离它最近的整数 Math.sart(n) 返回平方根,例如Math.sart(9)返回3 ...