洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)
//离散化后范围1~cnt不要错
#include<cstdio>
#include<cctype>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2e5+5,MAXIN=2e6;
int n,m,A[N],ref[N],cnt,sum[N*18],tot,son[N*18][2],root[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int Find(int v)
{
int l=1,r=cnt,m;
while(l<r)
if(ref[m=l+r>>1]<v) l=m+1;
else r=m;
return l;
}
void Discrete()
{
std::sort(ref+1,ref+1+n);
cnt=1;
for(int i=2;i<=n;++i)
if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1;i<=n;++i) A[i]=Find(A[i]);
}
void Build(int x,int &y,int l,int r,int pos)
{
sum[y=++tot]=sum[x]+1;
if(l==r) return;
int m=l+r>>1;
if(pos<=m) son[y][1]=son[x][1],Build(son[x][0],son[y][0],l,m,pos);
else son[y][0]=son[x][0],Build(son[x][1],son[y][1],m+1,r,pos);
}
int Query(int x,int y,int l,int r,int k)
{
if(l==r) return l;
int m=l+r>>1,tmp=sum[son[y][0]]-sum[son[x][0]];
if(tmp>=k) return Query(son[x][0],son[y][0],l,m,k);
else return Query(son[x][1],son[y][1],m+1,r,k-tmp);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("3834.in","r",stdin);
#endif
n=read(),m=read();
for(int i=1;i<=n;++i) ref[i]=A[i]=read();
Discrete();
for(int i=1;i<=n;++i) Build(root[i-1],root[i],1,cnt,A[i]);
for(int i=1,l,r,k;i<=m;++i)
l=read(),r=read(),k=read(),printf("%d\n",ref[Query(root[l-1],root[r],1,cnt,k)]);
return 0;
}
洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)的更多相关文章
- 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]
题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...
- 主席树总结(经典区间第k小问题)(主席树,线段树)
接着上一篇总结--可持久化线段树来整理吧.点击进入 这两种数据结构确实有异曲同工之妙.结构是很相似的,但维护的主要内容并不相同,主席树的离散化.前缀和等思想也要更难理解一些. 闲话 话说刚学习主席树的 ...
- Dynamic Rankings || 动态/静态区间第k小(主席树)
JYF大佬说,一星期要写很多篇博客才会有人看 但是我做题没有那么快啊QwQ Part1 写在前面 区间第K小问题一直是主席树经典题=w=今天的重点是动态区间第K小问题.静态问题要求查询一个区间内的第k ...
- 【洛谷 P3834】 可持久化线段树1(主席树)
题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进 ...
- 洛谷.3835.[模板]可持久化平衡树(fhq treap)
题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)
P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...
- 【可持久化线段树】POJ2104 查询区间第k小值
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 61284 Accepted: 21504 Ca ...
随机推荐
- 【API】API函数创建用户,添加到管理组
1 学习目标 使用API添加用户可以绕过某些杀毒软件的限制. 2 编程思路 2.1 代码原理 使用NetUserAdd这个API添加普通权限的用户,NetLocalGroupAddMembers这个A ...
- k-means 图像分割
经典的无监督聚类算法,不多说,上代码. import numpy as np import pandas as pd import copy import matplotlib.pyplot as p ...
- if-else 重构
最近发现自己写的代码if else太多了,有时候自己回头看都要重新捋逻辑,很不好.决定深入理解下if else重构. 中心思想: ①不同分支应当是同等层次,内容相当. ②合并条件表达式,减少if语句数 ...
- ARMV8 datasheet学习笔记3:AArch64应用级体系结构
1.前言 本文主要从应用的角度介绍ARMV8的编程模型和存储模型 2. AArch64应用级编程模型 从应用的角度看到的ARM处理器元素: 可见的元素(寄存器/指令) 说明 可见的寄存器 R0-R30 ...
- Python3学习笔记10-条件控制
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块 var1 = 100 if var1: print("1 - if 表达式条件为 true&q ...
- 从SDP中至少要看到那些东西?
最近对通过抓包获得了很多的SDP封包,对这些SDP媒体协商过程很是好奇,为什么不同的sip终端所提供的SDP包不尽相同,为什么同一台FS对不同的sip终端发送不同的SDP? 对我菜鸟级别的我们,我分享 ...
- 实现自己的Koa2
这部分的代码在https://github.com/zhaobao1830/koa2中demo文件夹中 Koa就是基于node自带的http模块,经过封装,监听端口,实现ctx(上下文)管理,中间件管 ...
- ambari下的flume和kafka整合
1.配置flume #扫描指定文件配置 agent.sources = s1 agent.channels = c1 agent.sinks = k1 agent.sources.s1.type=ex ...
- LeetCode(48):旋转图像
Medium! 题目描述: 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转 ...
- centOS下单点部署k8s
Kubernetes 是Google的一种基于容器的开源服务编排解决方案,在我们进行Kubernetes的学习前,为了对Kubernetes的工作有一个大概的认识, 我们需要先安装一个单节点的实例服务 ...