BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1061
题意:
思路:
直接放上大神的建模过程!!!(https://www.byvoid.com/zhs/blog/noi-2008-employee)
这道题正确的解法是构造网络,求网络最小费用最大流,但是模型隐藏得较深,不易想到。构造网络是该题的关键,以下面一个例子说明构图的方法和解释。
例如一共需要4天,四天需要的人数依次是4,2,5,3。有5类志愿者,如下表所示:
种类 1 2 3 4 5 时间 1-2 1-1 2-3 3-3 3-4 费用 3 4 3 5 6 设雇佣第i类志愿者的人数为X[i],每个志愿者的费用为V[i],第j天雇佣的人数为P[j],则每天的雇佣人数应满足一个不等式,如上表所述,可以列出
P[1] = X[1] + X[2] >= 4
P[2] = X[1] + X[3] >= 2
P[3] = X[3] + X[4] +X[5] >= 5
P[4] = X[5] >= 3
对于第i个不等式,添加辅助变量Y[i] (Y[i]>=0) ,可以使其变为等式
P[1] = X[1] + X[2] - Y[1] = 4
P[2] = X[1] + X[3] - Y[2] = 2
P[3] = X[3] + X[4] +X[5] - Y[3] = 5
P[4] = X[5] - Y[4] = 3
在上述四个等式上下添加P[0]=0,P[5]=0,每次用下边的式子减去上边的式子,得出
① P[1] - P[0] = X[1] + X[2] - Y[1] = 4
② P[2] - P[1] = X[3] - X[2] -Y[2] +Y[1] = -2
③ P[3] - P[2] = X[4] + X[5] - X[1] - Y[3] + Y[2] =3
④ P[4] - P[3] = - X[3] - X[4] + Y[3] - Y[4] = -2
⑤ P[5] - P[4] = - X[5] + Y[4] = -3
观察发现,每个变量都在两个式子中出现了,而且一次为正,一次为负。所有等式右边和为0。接下来,根据上面五个等式构图。
- 每个等式为图中一个顶点,添加源点S和汇点T。
- 如果一个等式右边为非负整数c,从源点S向该等式对应的顶点连接一条容量为c,权值为0的有向边;如果一个等式右边为负整数c,从该等式对应的顶点向汇点T连接一条容量为c,权值为0的有向边。
- 如果一个变量X[i]在第j个等式中出现为X[i],在第k个等式中出现为-X[i],从顶点j向顶点k连接一条容量为∞,权值为V[i]的有向边。
- 如果一个变量Y[i]在第j个等式中出现为Y[i],在第k个等式中出现为-Y[i],从顶点j向顶点k连接一条容量为∞,权值为0的有向边。
构图以后,求从源点S到汇点T的最小费用最大流,费用值就是结果。
根据上面的例子可以构造出如下网络,红色的边为每个变量X代表的边,蓝色的边为每个变量Y代表的边,边的容量和权值标已经标出(蓝色没有标记,因为都是容量∞,权值0)。
在这个图中求最小费用最大流,流量网络如下图,每个红色边的流量就是对应的变量X的值。
所以,答案为43+23+3*6=36。
上面的方法很神奇得求出了结果,思考为什么这样构图。我们将最后的五个等式进一步变形,得出以下结果
① - X[1] - X[2] + Y[1] + 4 = 0
② - X[3] + X[2] + Y[2] - Y[1] - 2 = 0
③ - X[4] - X[5] + X[1] + Y[3] - Y[2] + 3 = 0
④ X[3] + X[4] - Y[3] + Y[4] - 2 = 0
⑤ X[5] - Y[4] - 3 = 0
可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡。每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负的常数是流向附加汇点的流量。因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式。而我们还要求最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; int n,m; struct Edge
{
int from, to, cap, flow, cost;
Edge(int u, int v, int c, int f, int w) :from(u), to(v), cap(c), flow(f), cost(w) {}
}; struct MCMF
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n)
{
this->n = n;
for (int i = ; i<n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, cap, , cost));
edges.push_back(Edge(to, from, , , -cost));
m = edges.size();
G[from].push_back(m - );
G[to].push_back(m - );
} bool BellmanFord(int s, int t, int &flow, int & cost)
{
for (int i = ; i<n; i++) d[i] = INF;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF; queue<int> Q;
Q.push(s);
while (!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = ;
for (int i = ; i<G[u].size(); i++){
Edge& e = edges[G[u][i]];
if (e.cap>e.flow && d[e.to]>d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) { Q.push(e.to); inq[e.to] = ; }
}
}
} if (d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
for (int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u] ^ ].flow -= a[t];
}
return true;
} int MincostMaxdflow(int s, int t){
int flow = , cost = ;
while (BellmanFord(s, t, flow, cost));
return cost;
}
}t; int a[maxn]; int main()
{
//freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
int src = , dst = n+;
t.init(dst+);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
a[] = a[n+] = ;
for(int i=;i<=n+;i++)
{
int tmp = a[i] - a[i-];
if(tmp>) t.AddEdge(src,i,tmp,);
else t.AddEdge(i,dst,-tmp,);
}
for(int i=;i<=n;i++) t.AddEdge(i+,i,INF,);
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
t.AddEdge(x,y+,INF,z);
}
printf("%d\n",t.MincostMaxdflow(src,dst));
return ;
}
BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)的更多相关文章
- BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)
题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2877[Submit][Stat ...
- 【刷题】BZOJ 1061 [Noi2008]志愿者招募
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...
- BZOJ 1061 [Noi2008]志愿者招募(费用流)
题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...
- bzoj 1061 [Noi2008]志愿者招募(数学模型,MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1061 [题意] 雇人满足每天至少需要的人数. [思路一] Byvoid的题解 clic ...
随机推荐
- android studio eclipse keymap theme 快捷键 主题风格设置
android studio eclipse keymap theme 快捷键 主题风格设置 将Android Studio的快捷键设置与eclipse一致,使用习惯的快捷键才顺手.Mac系统下:进入 ...
- ORM for Net主流框架汇总
ORM框架:Object/Relation Mapping(对象/关系 映射)的缩写,易于理解的模型化数据的方法.简单的说就是把数据库的关系型数据类型转换为用对象型程序控制的框架类型. 框架优缺点分析 ...
- JQuery ajax请求返回(parsererror)异常处理
目前在学习一个Java应用的框架,反编译后在执行时一直报错,界面上显示”parsererror”,经过JavaScript调试后发现更详细的错误提示信息是 Unexpected token ' in ...
- python的一些遗漏用法
一. 补充基础数据类型的相关知识点 1. str. join() 把列表变成字符串 li = ["李嘉诚", "麻花藤", "⻩海峰", & ...
- Scrapy小技巧-MySQL存储, MYSQL拼接
这两天上班接手,别人留下来的爬虫发现一个很好玩的 SQL脚本拼接. 只要你的Scrapy Field字段名字和 数据库字段的名字 一样.那么恭喜你你就可以拷贝这段SQL拼接脚本.进行MySQL入库处理 ...
- Golang利用select和普通函数分别实现斐波那契数列
//斐波那契数列 //1 1 2 3 5 8 //观察规律 //第一轮:前两个数是1,1,相加等于2 //第二轮:第二个数和第三个数是1,2,相加等于3 //第三轮:第三个数和第四个数是2,3,相加等 ...
- Python 人工智能之人脸识别 face_recognition 模块安装
Python人工智能之人脸识别face_recognition安装 face_recognition 模块使用系统环境搭建 系统环境 Ubuntu / deepin操作系统 Python 3.6 py ...
- QML使用的内置对象
QML从ECMAScript继承而来,所以支持这个ECMAScript.经常在QML工程中看到Math.Data.....等方法,但是在Qt手册里搜索不到,这是因为这些方法不是QtQuick的,而是E ...
- Oracle使用——oracle表锁住,杀掉锁表进程
背景 在操作Oracle时,多人同时操作oracle数据库的同一张表的时候,经常会造成锁表现象,这时需要手动进行解锁. 步骤 以dba身份登录Oracle数据库(否则用户缺少杀掉进程权限,需要给用户分 ...
- C# 文件与二进制之间的转换
/// <summary> /// 工具类:文件与二进制流间的转换 /// </summary> public class FileBinaryConvertHelper { ...