http://acm.hdu.edu.cn/showproblem.php?pid=1529

Cashier Employment

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1489    Accepted Submission(s): 672

Problem Description
A supermarket in Tehran is open 24 hours a day every day and needs a number of cashiers to fit its need. The supermarket manager has hired you to help him, solve his problem. The problem is that the supermarket needs different number of cashiers at different times of each day (for example, a few cashiers after midnight, and many in the afternoon) to provide good service to its customers, and he wants to hire the least number of cashiers for this job. 
The manager has provided you with the least number of cashiers needed for every one-hour slot of the day. This data is given as R(0), R(1), ..., R(23): R(0) represents the least number of cashiers needed from midnight to 1:00 A.M., R(1) shows this number for duration of 1:00 A.M. to 2:00 A.M., and so on. Note that these numbers are the same every day. There are N qualified applicants for this job. Each applicant i works non-stop once each 24 hours in a shift of exactly 8 hours starting from a specified hour, say ti (0 <= ti <= 23), exactly from the start of the hour mentioned. That is, if the ith applicant is hired, he/she will work starting from ti o'clock sharp for 8 hours. Cashiers do not replace one another and work exactly as scheduled, and there are enough cash registers and counters for those who are hired.
You are to write a program to read the R(i) 's for i=0...23 and ti 's for i=1...N that are all, non-negative integer numbers and compute the least number of cashiers needed to be employed to meet the mentioned constraints. Note that there can be more cashiers than the least number needed for a specific slot.

Input
The first line of input is the number of test cases for this problem (at most 20). Each test case starts with 24 integer numbers representing the R(0), R(1), ..., R(23) in one line (R(i) can be at most 1000). Then there is N, number of applicants in another line (0 <= N <= 1000), after which come N lines each containing one ti (0 <= ti <= 23). There are no blank lines between test cases.
 
Output
For each test case, the output should be written in one line, which is the least number of cashiers needed.
If there is no solution for the test case, you should write No Solution for that case.
 
Sample Input
1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5
0
23
22
1
10
 
Sample Output
1

题目大意:一个超市,24小时营业,不同时间点所需的售货员数目不同,给出24小时各个时间的所需人数以及每个售货员的上班时间安排,每个售货员的工作时间是8小时,求最少需要多少售货员。

题目分析:由题目易知是道差分约束问题。则需要列出隐藏的不等式。

令S【I】表示【0,I】时间段以及工作过或者正在工作的人数【题目所求也就是S【24】】

令num【I】表示I时刻刚好开始工作的人数【也就是将题目中所说的每个售货员上班开始时间转化为了某一时刻刚好上班的人数】   

令R【I】表示时刻I所需人数  

则 S【I+1】-S【I】>= 0&&S【I+1】-S【I】<= num【I】【条件不等式一--->由每一时刻加入工作人数为num【I】来确定】

同时按照要求有    当 I >= 8 时 S【I】-S【I-8】>=R【I】

        当    I < 8 时 S【24】- S【I+16】+ S【I】> R【I】 【条件不等式二、三---->由每个时刻所需人数R【I】确定】

而最容易被遗忘的不等式是   S【24】-S【0】==  枚举值 mid,这是一个等式,化成不等式形式是 S【24】-S【0】>= 0 &&S【24】-S【0】<= 0 【不等式四、五-->由等式转化】

【PS:记得初始化多个数组,不然WA到怀疑人生..】

二分S【24】的值,二分判断的条件就是连边之后能够得到最长路【即不存在正环,这一点可以通过SPFA来判断】

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int INF=;
struct edge{
int to;
int len;
int next;
}EDGE[];
queue<int>pq;
int edge_cnt=,dist[],stk[],head[],n,in[],r[],num[];
void add(int x,int y,int z)
{
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
EDGE[edge_cnt].len=z;
head[x]=edge_cnt++;
}
bool spfa()
{
while(!pq.empty())
{
pq.pop();
}
memset(dist,-,sizeof(dist));
memset(stk,,sizeof(stk));
memset(in,,sizeof(in));
dist[]=;
pq.push();
in[]=;
while(!pq.empty())
{
int qwq=pq.front();pq.pop();
// cout << qwq << endl;
in[qwq]++;
if(in[qwq]>){
return false;
}
stk[qwq]=;
for(int i = head[qwq] ; i != - ; i = EDGE[i].next)
{
int v=EDGE[i].to;
// cout << dist[v]<<v<<endl;
if(dist[v]<dist[qwq]+EDGE[i].len)
{
dist[v]=dist[qwq]+EDGE[i].len;
if(!stk[v]){
stk[v]=;
pq.push(v);
}
}
}
}
return true;
}
bool check(int x)
{
memset(head,-,sizeof(head));
for(int i = ; i <= ; i++)
{
add(i-,i,);
add(i,i-,-num[i]);
if(i>=)
add(i-,i,r[i]);
else
add(i+,i,r[i]-x);
}
add(,,-x);
add(,,x);
return spfa();
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
for(int i = ; i <= ; i++)
{
scanf("%d",&r[i]);
}
scanf("%d",&n);
memset(num,,sizeof(num));
for(int i = ; i < n ; i++)
{
int x;
scanf("%d",&x);
num[x+]++;
}
int l=;int r=n;
while(l<=r)
{
int mid=(l+r)/;
if(check(mid))
{
r=mid-;
}
else
{
l=mid+;
}
}
if(l>n)printf("No Solution\n");
else printf("%d\n",l);
}
return ;
}

【HDOJ1529】【差分约束+SPFA+二分】的更多相关文章

  1. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  2. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

  3. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  4. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  8. POJ-3159.Candies.(差分约束 + Spfa)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 40407   Accepted: 11367 Descri ...

  9. 图论分支-差分约束-SPFA系统

    据说差分约束有很多种,但是我学过的只有SPFA求差分: 我们知道,例如 A-B<=C,那么这就是一个差分约束. 比如说,著名的三角形差分约束,这个大家都是知道的,什么两边之差小于第三边啦,等等等 ...

随机推荐

  1. Java Web(十一) 文件上传与下载

    文件上传 上传的准备工作 表单method必须为post 提供file组件 设置form标签的enctype属性为multipart/form-data,如果没有设置enctype属性,浏览器是无法将 ...

  2. Oracle.PL/SQL高级

    一.匿名块 .使用returning ... INTO 保存增删改表数据时的一些列的值 ()增加数据时保存数据 DECLARE v_ename emp.ename%TYPE; v_sal emp.sa ...

  3. java⑥

    import java.util.Scanner; /** * 所有在java.lang包下面的所有类 不需要显示的引入包! * java.util.Scanner : 想获取用户的输入 必须引入相关 ...

  4. linux:scp从入门到刚入门

    [温馨提示] 此文和ssh配合食用更佳. 首先请小伙伴们连上你要传文件的那台机,用ssh可以免密登录. [传送文件] 我们一般发文件的话可以scp来发一发,比如说我现在要向多个扔很多tomcat包,我 ...

  5. windows上dubbo-admin的安装

    dubbo-admin的安装 (1)先下载好zookeeper包,因为启动dubbo-admin时需要先启动zookeeper zookeeper:dubbo的注册中心(自己下载 ,找到bin目录下的 ...

  6. loadrunner请求json数据参数化问题

    http://blog.sina.com.cn/s/blog_62079f620102vvx3.html

  7. FIFO的使用总结

    使用FIFO积累 FIFO是在FPGA设计中使用的非常频繁,也是影响FPGA设计代码稳定性以及效率等得关键因素.我总结一下我在使用FIFO过程中的一些心得,与大家分享.         我本人是做有线 ...

  8. 利用SMB jcifs实现对windows中的共享文件夹的操作

    需求是在本地上传文件到服务器上,服务器是windows的,使用共享文件夹提供权限给你的. 利用第三方: CIFS (Common Internet File System) SMB(Server Me ...

  9. netty ------------ 如果selector检测到一个channel可以读了

    -----------------一个NioEventLoopGroup 的初始化的时候,会初始化一个 NioEventLoop数组,每个NioEventLoop在初始化的时候,会open一个sele ...

  10. day 32 子进程的开启 及其用法

    开启两种子进程的两种方式# # # 1 传统方式# from multiprocessing import Process# import time# def task(name):# print ( ...