loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\)
化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloor}{\lfloor \frac{m}{i} \rfloor}\sum_{d|i}\mu(d)^2*\mu(\frac{i}{d})\)
有结论\(\sum_{d|n}\mu(d)^2*\mu(\frac{n}{d})=\sum_{i=1}^{\sqrt(n)}\mu(i)\)分块即可
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=4000000+10,maxn=200000+10,inf=0x3f3f3f3f;
bool mark[N];
int prime[N],cnt,mu[N];
void init()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
{
mu[i]+=mu[i-1];
mu[i]=(mu[i]%mod+mod)%mod;
}
}
int main()
{
init();
ll n,m,ans=0;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
for(ll i=1,j;i<=n;i=j+1)
{
j=min(n/(n/i),m/(m/i));
ll t1=(mu[(int)sqrt(j)]-mu[(int)sqrt(i-1)]+mod)%mod,t2=(n/i)%mod,t3=(m/i)%mod;
add(ans,t1*t2%mod*t3%mod);
}
printf("%lld\n",ans);
return 0;
}
/********************
********************/
loj#528. 「LibreOJ β Round #4」求和的更多相关文章
- Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- 【Spring Security】五、自定义过滤器
在之前的几篇security教程中,资源和所对应的权限都是在xml中进行配置的,也就在http标签中配置intercept-url,试想要是配置的对象不多,那还好,但是平常实际开发中都往往是非常多的资 ...
- K8S 安装笔记
1. 准备CentOS7环境 #关闭防火墙 # systemctl disable firewalld # systemctl stop firewalld #安装etcd, kubernetes(会 ...
- 【ASP.NET】The CodeDom provider type “Microsoft.CodeDom.Providers.DotNetCompilerPlatform.CSharpCodeProvider” could not be located
一般是asp.net的项目在启动的时候会报这个错误. 页面显示成: 我推测的原因是由于project的build的输出属性改了, 非bin目录下, 导致这个问题. 解决这个问题的方案有两个: 1. 改 ...
- to do list_hadoop
1.页面翻译 2.UI优化 vue.js reactive.js 3.Hadoop生态学习 Spark.Kafka.Druid……
- Anaconda 安装后配置环境变量
Anaconda 安装后在 cmd 中运算 python 无效, 是环境变量没有生效.正常安装需要有三个,配置好就行. D:\xwapp\ProgramData\Anaconda3 D:\xwapp\ ...
- 不消失的 taskeng 黑窗口?
2017-01-06出来不消失的 taskeng 黑窗口? 计划运行某些程序时会出现这种现象.例如: 在计划中运行 a.bat : a.bat 里面的内容:start notepad.exestart ...
- Codeforces 1062 E - Company
E - Company 思路: 首先,求出每个点的dfs序 然后求一些点的公共lca, 就是求lca(u, v), 其中u是dfs序最大的点, v是dfs序最小的大点 证明: 假设o是这些点的公共lc ...
- java高并发解决方案
高并发的解决方法有两种: 1.使用缓存 2.使用生成静态页面: (代码质量,不要性能低下的sql和代码.有的一条sql搞定的事,有人用了多个循环才能搞定.取决于程序员的经验!(还有就是从最基础的地方优 ...
- Asp.net core 学习笔记 ( Web Api )
asp.net core 把之前的 webapi 和 mvc 做了结合. mvc 既是 api. 但是后呢,又发现, api 确实有独到之处,所以又开了一些补助的方法. namespace Proje ...
- (6)进程---Event事件
# 阻塞事件 : e = Event()生成事件对象e e.wait()是给程序加阻塞 , 程序当中是否加阻塞完全取决于该对象中的is_set() [默认返回值是False] e.wait(2) 传参 ...