POJ - 1039 Pipe(计算几何)
http://poj.org/problem?id=1039
题意
有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入口处的(x1,y1),(x1,y1-1)之间射入,向四面八方传播,求解光线最远能传播到哪里(取x坐标)或者是否能穿透整个管道。
分析
最远的直线必定经过一个上折点和一个下折点。枚举这两个点即可。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((s-b.e)^(b.s-b.e)) == )
return make_pair(,res);//重合
else return make_pair(,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(,res);
}
};
//判断直线和线段相交
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= ;
} Point up[],down[];
int main()
{
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
{
up[i].input();
down[i] = up[i];
down[i].y -= ;
}
bool flag = false;//穿过所有的标记
double ans = -10000000.0;
int k;
for(int i = ;i < n;i++)
{
for(int j = ;j < n;j++)
{
for(k = ;k < n;k++) //直线L最大延伸到第k-1节管子
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j)) //由于不清楚L究竟是与第k-1节管子的上管壁还是下管壁相交,因此都计算交点,取最优
{
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(up[i],down[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
}
}
if(flag)break;
}
if(flag)printf("Through all the pipe.\n");
else printf("%.2lf\n",ans);
}
return ;
}
POJ - 1039 Pipe(计算几何)的更多相关文章
- poj 1039 Pipe (Geometry)
1039 -- Pipe 理解错题意一个晚上._(:з」∠)_ 题意很容易看懂,就是要求你求出从外面射进一根管子的射线,最远可以射到哪里. 正解的做法是,选择上点和下点各一个,然后对于每个折点位置竖直 ...
- poj 1039 Pipe(叉乘。。。)
题目:http://poj.org/problem?id=1039 题意:有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从 ...
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- 简单几何(直线与线段相交) POJ 1039 Pipe
题目传送门 题意:一根管道,有光源从入口发射,问光源最远到达的地方. 分析:黑书上的例题,解法是枚举任意的一个上顶点和一个下顶点(优化后),组成直线,如果直线与所有竖直线段有交点,则表示能穿过管道. ...
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- POJ 1039 Pipe
题意:一根管子,中间有一些拐点,给出拐点的上坐标,下坐标为上坐标的纵坐标减1,管子不能透过光线也不能折射光线,问光线能射到最远的点的横坐标. 解法:光线射到最远处的时候一定最少经过两个拐点,枚举每两个 ...
- poj 1039 Pipe(几何基础)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9932 Accepted: 3045 Description ...
- POJ 1039 Pipe 枚举线段相交
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9493 Accepted: 2877 Description ...
- POJ 1039 Pipe | 线段相交
题目: 给一个管子,有很多转弯处,问从管口的射线射进去最长能射到多远 题解: 根据黑书,可以证明的是这条光线一定经过了一个上顶点和下顶点 所以我们枚举每对上下顶点就可以了 #include<cs ...
随机推荐
- MyBatis自动生成Java/C#的Bean(Entity)的等价MYSQL实现函数
这是单元测试代码:TESTTITLECASE.sql SELECT TITLECASE('ABC_DEF_hgk') as BEANNAME FROM DUAL; SELECT TITLECASE(' ...
- Windows 版本下 Oracle12.1.0.2 升级Oracle12.2.0.1的步骤
oracle12.1.0.1 2013年发布的产品 2014年左右发布12.1.0.2 2016年底发布了 oracle12.2.0.1 经常有人会安装了最早的oracle版本,然后需要升级到最新的o ...
- jquery ajax中data属性详解
$.post.$.get是一些简单的方法,如果要处理复杂的逻辑,还是需要用到jQuery.ajax() 一.$.ajax的一般格式 $.ajax({ type: 'POST', url: url , ...
- 转《ionic生命周期》
1.认识ionic的生命周期钩子 截至ionic 3.8.0版本,框架提供了8个钩子函数,它们分别会在页面生命周期的各个阶段被触发,我们来简单了解一下. 1.1 ionViewDidLoad 页面加载 ...
- java中父进程与子进程
http://blog.csdn.NET/seelye/article/details/8269705
- ZooKeeper客户端 zkCli.sh 节点的增删改查
zkCli.sh 在 bin 目录下的 zkCli.sh 就是ZooKeeper客户端 ./zkCli.sh -timeout 5000 -server 127.0.0.1:2181 客户端与 ...
- anaconda2安装cv2
http://m.blog.csdn.net/u010167269/article/details/62447648 下载离线安装包:https://anaconda.org/menpo/opencv ...
- Django-website 程序案例系列-12 CSRF
django为用户实现防止跨站请求伪造的功能 需要配置settings.py: django.middleware.csrf.CsrfViewMiddleware 1. form表单提交 <f ...
- 【 Gym - 101124E 】Dance Party (数学)
BUPT2017 wintertraining(15) #4G Gym - 101124 E.Dance Party 题意 有c种颜色,每个颜色最多分配给两个人,有M个男士,F个女士,求至少一对男士同 ...
- ANDROID OptionMenu 菜单列表
package com.app.menu; import android.os.Bundle; import android.app.Activity; import android.content. ...