Floyd-傻子也能看懂的弗洛伊德算法(转)




for (i = ; i <= n; i++)
{
for (j = ; j <= n; j++)
{
if (e[i][j] > e[i][] + e[][j])
e[i][j] = e[i][] + e[][j];
}
}

//经过1号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];



for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
#include
int main()
{
int e[][],k,i,j,n,m,t1,t2,t3;
int inf=; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
//初始化
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=inf;
//读入边
for(i=;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
}
//Floyd-Warshall算法核心语句
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j] )
e[i][j]=e[i][k]+e[k][j];
//输出最终的结果
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
printf("%10d",e[i][j]);
}
printf("\n");
}
return ;
}

Floyd-傻子也能看懂的弗洛伊德算法(转)的更多相关文章
- Floyd算法-傻子也能看懂的弗洛伊德算法(转)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. ...
- Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)
今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕) 你们都说图看着没意思不好看,那今天就来点情景 暑假,_GC准备去一些城市旅游.有些城市之 ...
- C--全排列的实现(递归方法) 傻子也能看懂的
假设数组含有n个元素,则提取数组中的每一个元素做一次头元素,然后全排列除数组中除第一个元素之外的所有元素,这样就达到了对数组中所有元素进行全排列的得目的.[这句话才是重点!] 比如 1,2,3.的 ...
- 萌新也能看懂的KMP算法
前言 算法是什么?算法就是数学规律.怎么去总结和发现这个规律,就是理解算法的过程. KMP算法的本质是穷举法,而并不是去创造新的匹配逻辑. 以下将搜寻的字符串称为子串(part),以P表示.被搜寻的字 ...
- 弗洛伊德算法(Floyd )
package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com ...
- Floyd弗洛伊德算法
先看懂如何使用 用Java实现一个地铁票价计算程序 String station = "A1 A2 A3 A4 A5 A6 A7 A8 A9 T1 A10 A11 A12 A13 T2 A1 ...
- [转]看懂UML类图
这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图所表达的含义和最终的代码 ...
- 看懂Oracle执行计划
最近一直在跟Oracle打交道,从最初的一脸懵逼到现在的略有所知,也来总结一下自己最近所学,不定时更新ing- 一:什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问 ...
- 一张图看懂ANSYS17.0 流体 新功能与改进
一张图看懂ANSYS17.0 流体 新功能与改进 提交 我的留言 加载中 已留言 一张图看懂ANSYS17.0 流体 新功能与改进 原创2016-02-03ANSYS模拟在线模拟在线 模拟在线 ...
随机推荐
- Python的虚拟环境virtualenv
原文地址:blog.sina.com.cn/s/blog_4ddef8f80101eu0w.html Python的虚拟环境可以使一个Python程序拥有独立的库library和解释器interpre ...
- 【Linux】Linux中Swap与Memory内存简单介绍
背景介绍 对于Linux来说,其在服务器市场的使用已经占据了绝对的霸主地位,不可动摇.Linux的各种设计思想和使用也被传承(当然不乏各种黑Linux,而且黑的漂亮).Linux的很多独特的设计,对性 ...
- Debian 9 源配置
Debian 9: deb http://mirrors.163.com/debian/ stretch main non-free contrib deb http://mirrors.163.co ...
- 【黑客免杀攻防】读书笔记2 - 免杀与特征码、其他免杀技术、PE进阶介绍
第3章 免杀与特征码 这一章主要讲了一些操作过程.介绍了MyCCL脚本木马免杀的操作,对于定位特征码在FreeBuf也曾发表过类似工具. VirTest5.0特征码定位器 http://www.fre ...
- box-cox 转换
box-cox 由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布. Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性 ...
- Excel中快捷键Ctrl+End覆盖过多
Sub dd() MsgBox ActiveSheet.UsedRange.Address End Sub 更简单的方法:通过快捷键,选中空白行/列,然后删除行/列,保存,OK!
- ASP.NET Core Identity 实战(4)授权过程
这篇文章我们将一起来学习 Asp.Net Core 中的(注:这样描述不准确,稍后你会明白)授权过程 前情提要 在之前的文章里,我们有提到认证和授权是两个分开的过程,而且认证过程不属于Identity ...
- Android天气预报
Android天气预报 1.指定 WebService 的命名空间和调用方法import org.ksoap2.serialization.SoapObject;private static fina ...
- Ex 6_12 凸多边形的最优三角剖分..._第六次作业
假设顶点的总数为n,从0到n-1. 从序号为0的顶点开始以逆时针方向排序,对于 令子问题A[i,j]为包含顶点i,i+1, . . . j的凸多边形的最小三角剖分代价,dist(i,j)为顶点i到顶点 ...
- Java基础:整型数组(int[]、Integer[])排序
Windows 10家庭中文版,java version "1.8.0_152",Eclipse Oxygen.1a Release (4.7.1a), 参考链接:http://w ...