最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作Th,属于前景的像素点数占整幅图像的比例记为w1,其平均灰度G1;背景像素点数占整幅图像的比例为w2,其平均灰度为G2。图像的总平均灰度记为G_Ave,类间方差记为 g

假设图像的背景较暗,并且图像的大小为MXN,图像中像素的灰度值小于阈值的像素个数记作N1,像素灰度大于阈值的像素个数记作N2,则有:

采用遍历的方法得到使类间方差最大的阈值,即为所求。

代码如下:

(C文件)

 #include <stdio.h>
#include <math.h>
#include "myOtsu.h"
typedef unsigned char uchar;
int myOtsu(const IplImage *frame) //大津法求阈值
{
#define GrayScale 256 //frame灰度级
int width = frame->width;
int height = frame->height;
int pixelCount[GrayScale]={};
float pixelPro[GrayScale]={};
int i, j, pixelSum = width * height, threshold = ;
float w0, w1, u0tmp, u1tmp, u0, u1, deltaTmp, deltaMax = ;
uchar* data = (uchar*)frame->imageData; //统计每个灰度级中像素的个数
for(i = ; i < height; i++)
{
for(j = ;j < width;j++)
{
pixelCount[(int)data[i * width + j]]++;
}
} //计算每个灰度级的像素数目占整幅图像的比例
for(i = ; i < GrayScale; i++)
{
pixelPro[i] = (float)pixelCount[i] / pixelSum;
} for(i = ; i < GrayScale; i++)//遍历所有从0到255灰度级的阈值分割条件,测试哪一个的类间方差最大
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = ;
for(j = ; j < GrayScale; j++)
{
if(j <= i) //背景部分
{
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0;
u1 = u1tmp / w1;
deltaTmp = (float)(w0 *w1* pow((u0 - u1), )) ;
if(deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
return threshold;
}

(H文件)

 #ifndef MYOTSU_H_
#define MYOTSU_H_
typedef struct {
int width;
int height;
unsigned char imageData;
}IplImage;
extern int myOtsu(const IplImage *frame);
#endif /*MYOTSU_H_*/

大家转载请注明出处!谢谢!

在这里要感谢GISPALAB实验室的各位老师和学长学姐的帮助!谢谢~

自适应阈值二值化之最大类间方差法(大津法,OTSU)的更多相关文章

  1. 【转】Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化

    局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...

  2. [转载+原创]Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化

    局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...

  3. Wellner 自适应阈值二值化算法

    参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral I ...

  4. [转载+原创]Emgu CV on C# (四) —— Emgu CV on 全局固定阈值二值化

    重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也 ...

  5. OpenCV图像的全局阈值二值化函数(OTSU)

    cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最 ...

  6. 图像处理------基于Otsu阈值二值化

    一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值 ...

  7. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  8. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

  9. 图像二值化----otsu(最大类间方差法、大津算法)

    最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津 法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像 ...

随机推荐

  1. NOI2018场外游记

    鬼晓得APIO以后我经历了些什么 Day 0 好像没什么要记的 Day 1 下午去参加开幕式 神tm大型落地柜装风扇空调下放冰块 开幕式,,,hot chocolate是真的hot(强制在线?卡常?) ...

  2. Linux新增用户过程详解

    Linux系统中,当使用useradd添加用户时,会将系统的/etc/skel目录下的所有文件复制到新添加用户的家目录中.该目录下的所有文件都是隐藏文件(以.点开头的文件). 通过修改.添加.删除/e ...

  3. char *a与char a[n]的区别

    char *a='ab';//a[2]一定为'\0',但是,a[5]这样的指针越界不会报错 char a[3] = {'a','a','a'};//a[3]属于越界,会报错 char b[5]={'b ...

  4. 前端 - Ajax (1)

    Ajax 主要作用 用于隐式提交,有别于input 提交时不会跳转/刷新页面. 前端: html 代码:(id) <p> <input id="user" typ ...

  5. [转]mmap和madvise的使用

    1.    madvise的简介            madvise可以设置内存的分配方式或者说是分配的细节方式.具体参见linux man madvise. #include <sys/ty ...

  6. JS的call方法的作用解释,简单易懂

    先看看关于call()的官方解释,“调用一个对象的一个方法,以另一个对象替换当前对象.”,看了这样的解释,或许让你更摸不着头脑了.看例子: var x = "我是全局变量"; // ...

  7. SpringAOP+注解实现简单的日志管理

    今天在再次深入学习SpringAOP之后想着基于注解的AOP实现日志功能,在面试过程中我们也经常会被问到:假如项目已经上线,如何增加一套日志功能?我们会说使用AOP,AOP也符合开闭原则:对代码的修改 ...

  8. spring整合ehcache2.5.2缓存异常-- net.sf.ehcache.CacheException

    报错如下: The source of the existing CacheManager is: DefaultConfigurationSource [ ehcache.xml or ehcach ...

  9. SSH开发环境搭建

    断断续续学习hibernate也有一段时间了,在这里研究一下SSH开发环境的搭建过程,自己简单的搭建一个SSH的开发环境.采用maven搭建. 0.项目结构: 1.导包:(maven项目) pom.x ...

  10. shiro自定义realm认证(五)

    上一节介绍了realm的作用: realm:需要根据token中的身份信息去查询数据库(入门程序使用ini配置文件),如果查到用户返回认证信息,如果查询不到返回null.token就相当于是对用户输入 ...