Link: Documentation

About the Traditional Template Square Marker

Limitations (重要)

  • Traditional Template Square Marker

Replacing the marker's pattern of the 4.25 inch square marker (used above) with a pattern of significantly increased complexity reduced the tracking range from 34 to 15 inches.

  

  • Traditional Template Square Marker

The total number of possible barcodes available depends on the number of rows and columns in the barcode and the type of error detection and correction (EDC) algorithm enabled. Using better EDC will result in a smaller set of barcodes being available, but lower likelihood of markers being misrecognized during tracking.

The barcode type is set via the function arSetMatrixCodeType

Multimarker Tracking

This refers specifically to the use of multiple square markers fixed to a single object. 一个固定物体上的多个识别点。

Some of the benefits of multimarkers include:

    • Increased robustness to occlusion: even when one marker is obscured, another may be visible. 提高鲁棒性。
    • Improved pose-estimation accuracy: in a multimarker set, all marker corners are used to calculate the pose, meaning that the markers effectively cover a larger optical angle, resulting in reduced numerical error. 提高计算精确性。
    • Possibility for robust pose estimation (using M-estimation). With multimarker tracking, statistical techniques can be applied to improve rejection of mis-read marker poses. 减少mis-read。

Note that these are the same advantages of using NFT (texture) tracking.

The advantages of multimarker tracking over NFT is that it is less CPU intensive, faster, and can operate reliably at greater distances from the camera.

The obvious disadvantage is that it requires the surface to be covered in square markers.

In ARToolKit for Android, any app using the ARBaseLib library or its underlying native implementation, ARWrapper, supports multimarker tracking without any further work by the developer. The code is provided in the ARMarkerMulti C++ class. Thus, the following examples include support for multimarker tracking, as well as other marker types:

    • ARSimple
    • ARSimpleInteraction
    • ARSimpleNative
    • ARSimpleNativeCars

A multimarker configuration file is structured as follows:

    • Lines beginning with a # character are treated as comments and ignored.
    • Blank lines are ignored. Blank lines do not play any part in the configuration structure.
    • The first non-blank/comment line in the file must be a single integer specifying the number of markers to be read from the multimarker configuration file. (This will usually be the actual number of markers in the set.)
    • Each five subsequent non-blank/comment lines specify a single marker in the set,
      • The first line of each marker specification is either an integer greater than or equal to 0 (if using barcode markers) or the path to a pictorial (template) marker pattern file, expressed relative to this multimarker configuration.
      • The next line specifies the size of this marker. Usually this will be the width of the outer border in millimeters. (Multiply inches by 25.4 to get millimeters).
      • The last three lines of the marker specification are the first three rows of a standard 4×4 homogenous coordinate transform matrix (in row-major order). This transform is from the combined multimarker set's coordinate system origin to the origin of this marker. More information on this transform is set out below.

Natural Feature Tracking with Fiducial Markers

The result can be seemingly marker-less tracking (since the fiducial markers need not be obvious to the human viewer). Although ARToolKit offers full marker-less tracking, there are situations where using one or more About the Traditional Template Square Marker has advantages:

    • Using the NFT 1.0 tracker plus fiducial markers is less computationally expensive than NFT 1.0 + 2.0 full marker-less tracking. Thus NFT 1.0 with fiducial markers is more practical for mobile devices.
    • The NFT 2.0 tracker has a practical limit on the number of distinct markers that can be distinguished at any one time. Thus, if a large number of images need to be tracked (e.g. a 100-page book), fiducial markers enable efficient identification of numerous images intended to be tracked.
    • Fiducial marker tracking adds significant robustness to tracking, particularly in poor lighting conditions, or when the camera is far away from the tracked image.

To use only the standard 1.0 version of ARToolKit's NFT tracking with a fiducial marker,

    • the tracked surface must have the marker either in the image or around the outside of it,
    • there must be at least one in each image,
    • the marker(s) must be square, and
    • the markers must all have a black border and lie on a white background, or vice-versa.

The marker(s) are not required to be of a particular size and the marker can embed colored patterns that blend with the image background.

/* 虽然简单,但用户体验不好 */

If implementing an app using standard ARToolKit NFT in which one or more fiducial markers is required,

an image and markers input set configuration file (.iset) is required to generate recognition and tracking data set files.

The generated files are a marker file (.mrk) and one (or more) pattern files (.pat-xx).


The output of this training is a set of data that can be used for realtime tracking in application using the ARToolKit SDK.

The following constraints apply to surfaces which can be used with ARToolKit NFT.

    • The surfaces to be tracked must be supplied as a rectangular image.
    • The images must be supplied in jpeg format.
    • The surface must be textured and have a reasonable amount of fine detail and sharp edges (a low degree of self-similarity and high spatial-frequency). Images with large areas of single flat color, that are blurred or have soft detail will not track well, if at all. In such images, it's difficult to locate distinct feature points.
    • Larger or higher resolution images (more pixels) will allow the extraction of feature points at higher levels of detail, and thus will track better when the camera is closer to the image, or when a higher resolution camera is used.
  • 特征点提取:

unsw@unsw-UX303UB$ ./genTexData ~/Desktop/pinball.jpg
--
Generator started at -- :: +
Select extraction level for tracking features, (few) <--> (many), [default=
]:
MAX_THRESH = 0.900000
MIN_THRESH = 0.550000
SD_THRESH = 8.000000
Select extraction level for initializing features, (few) <--> (many), [default=
]:
SURF_FEATURE =
Reading JPEG file...
Done.
JPEG image '/home/unsw/Desktop/pinball.jpg' is 1637x2048.
JPEG image '/home/unsw/Desktop/pinball.jpg' does not contain embedded resolution data, and no resolution specified on command-line.
Enter resolution to use (in decimal DPI):
Enter the minimum image resolution (DPI, in range [3.762, 220.000]):
Enter the maximum image resolution (DPI, in range [50.000, 220.000]):

Image DPI (): 50.000000
Image DPI (): 62.996056
Image DPI (): 79.370056
Image DPI (): 100.000008
Image DPI (): 120.000000
Generating ImageSet...
(Source image xsize=, ysize=, channels=, dpi=220.0).
Done.
Saving to /home/unsw/Desktop/pinball.iset...
Done.
Generating FeatureList...
Start for 120.000000 dpi image.
ImageSize = [pixel]
Extracted features = [pixel]
Filtered features = [pixel]
/.
Done.
Max feature =
: (, ) : 0.321772 min=0.427143 max=0.805384, sd=29.091545
: ( ,) : 0.379421 min=0.402622 max=0.801940, sd=50.645126
: ( ,) : 0.380300 min=0.416025 max=0.776800, sd=48.386406
: ( ,) : 0.445152 min=0.492460 max=0.809735, sd=61.714653
: (, ) : 0.524282 min=0.524524 max=0.876935, sd=36.742512
: (, ) : 0.545269 min=0.566303 max=0.859710, sd=32.648140
: (,) : 0.556919 min=0.602261 max=0.858849, sd=19.694742
: ( ,) : 0.558706 min=0.550294 max=0.766749, sd=36.739986
: (, ) : 0.566552 min=0.560816 max=0.818152, sd=28.520765
: (,) : 0.573113 min=0.567233 max=0.856610, sd=15.011593
: (,) : 0.597921 min=0.619703 max=0.885224, sd=46.743130
: (,) : 0.606832 min=0.579851 max=0.871763, sd=16.810856
: (,) : 0.613515 min=0.595888 max=0.881752, sd=17.100351
: (,) : 0.636611 min=0.587019 max=0.850623, sd=40.108799
: (,) : 0.653610 min=0.605613 max=0.887962, sd=17.939051
: (,) : 0.658504 min=0.595797 max=0.910285, sd=33.621487
: (,) : 0.661558 min=0.615135 max=0.905841, sd=20.568960
: (,) : 0.668593 min=0.707550 max=0.914466, sd=33.422256
: (,) : 0.676129 min=0.555997 max=0.890244, sd=34.606815
: (,) : 0.678596 min=0.594938 max=0.927675, sd=48.889709
: (,) : 0.690536 min=0.666195 max=0.903544, sd=35.013893
: (,) : 0.693664 min=0.641845 max=0.876466, sd=21.594414
: (,) : 0.693795 min=0.660852 max=0.915004, sd=18.491032
: (,) : 0.694179 min=0.557615 max=0.909218, sd=26.793728
: (,) : 0.699786 min=0.554285 max=0.879627, sd=34.442245
: (,) : 0.704756 min=0.566293 max=0.910918, sd=35.633511
: (,) : 0.705136 min=0.568435 max=0.935403, sd=28.677387
: (,) : 0.713484 min=0.644575 max=0.927928, sd=17.596481
: ( ,) : 0.714487 min=0.657192 max=0.824285, sd=43.777817
: (,) : 0.716575 min=0.620929 max=0.936591, sd=25.896675
: (,) : 0.717786 min=0.557178 max=0.897819, sd=27.770891
: (,) : 0.718309 min=0.653641 max=0.932392, sd=14.924490
: (,) : 0.719238 min=0.558125 max=0.874271, sd=33.856152
: (,) : 0.722319 min=0.699285 max=0.908542, sd=15.166432
: ( ,) : 0.724148 min=0.706359 max=0.914760, sd=13.407082
: (,) : 0.724617 min=0.654127 max=0.917548, sd=25.730522
: (,) : 0.732004 min=0.569813 max=0.931096, sd=39.249733
: (,) : 0.732772 min=0.630711 max=0.931409, sd=16.155327
: (,) : 0.739840 min=0.738301 max=0.927481, sd=14.799817
: (,) : 0.740248 min=0.552373 max=0.947546, sd=50.131382
: ( ,) : 0.744986 min=0.554222 max=0.816545, sd=26.980175
: (,) : 0.749057 min=0.760236 max=0.933896, sd=29.690248
: (,) : 0.752918 min=0.746642 max=0.934489, sd=33.118176
: (,) : 0.753736 min=0.622629 max=0.942594, sd=61.595882
: (,) : 0.755940 min=0.583711 max=0.943352, sd=38.911907
: ( ,) : 0.756052 min=0.619902 max=0.899679, sd=32.681084
: (,) : 0.757011 min=0.552756 max=0.924492, sd=30.765591
: (,) : 0.759391 min=0.610077 max=0.886740, sd=21.421764
: (,) : 0.762225 min=0.670046 max=0.942259, sd=22.942366
: (,) : 0.763535 min=0.690581 max=0.915867, sd=39.687431
: (,) : 0.769279 min=0.686215 max=0.942906, sd=54.398426
: (,) : 0.771564 min=0.552272 max=0.937441, sd=60.583969
: (,) : 0.771654 min=0.555382 max=0.947278, sd=44.201382
: (,) : 0.771842 min=0.619332 max=0.956403, sd=27.837420
: (,) : 0.773208 min=0.703353 max=0.915948, sd=41.982334
: (,) : 0.774456 min=0.552266 max=0.938892, sd=26.683750
: (,) : 0.776526 min=0.570332 max=0.963384, sd=21.844723
: (,) : 0.776703 min=0.657934 max=0.951301, sd=24.961845
: (,) : 0.778658 min=0.796329 max=0.946868, sd=32.560452
: (,) : 0.779287 min=0.552390 max=0.951855, sd=42.422295
: (,) : 0.783576 min=0.776523 max=0.952139, sd=20.210348
: (,) : 0.783823 min=0.657023 max=0.945138, sd=46.254639
: (,) : 0.785681 min=0.561756 max=0.934968, sd=16.123209
: (,) : 0.787113 min=0.605538 max=0.961287, sd=51.377285
: ( ,) : 0.788313 min=0.771169 max=0.944046, sd=41.105404
: (,) : 0.788655 min=0.561266 max=0.961304, sd=53.177109
: (,) : 0.790683 min=0.770458 max=0.938919, sd=32.166893
: (,) : 0.792271 min=0.815125 max=0.937002, sd=39.905476
: (,) : 0.793819 min=0.754895 max=0.927860, sd=25.337523
: (,) : 0.794728 min=0.557320 max=0.941102, sd=47.142551
: (,) : 0.794926 min=0.551109 max=0.947475, sd=66.032494
: (,) : 0.798013 min=0.770284 max=0.940773, sd=26.754530
: (,) : 0.798614 min=0.732842 max=0.942958, sd=42.600384
: (,) : 0.800596 min=0.829372 max=0.951824, sd=37.470352
: (,) : 0.803065 min=0.660888 max=0.955436, sd=11.616018
: (,) : 0.803943 min=0.554751 max=0.941155, sd=28.632961
: (,) : 0.805024 min=0.709963 max=0.943415, sd=51.277973
: (,) : 0.805752 min=0.803591 max=0.947742, sd=20.102901
: (,) : 0.808967 min=0.626351 max=0.918251, sd=32.227089
: (,) : 0.809588 min=0.677511 max=0.961718, sd=55.540771
: (,) : 0.811643 min=0.661945 max=0.962027, sd=49.692898
: (,) : 0.812565 min=0.626655 max=0.962040, sd=51.609238
: (,) : 0.812870 min=0.672399 max=0.955859, sd=56.590508
: (,) : 0.815031 min=0.715614 max=0.958174, sd=39.535885
: (,) : 0.815342 min=0.618177 max=0.923080, sd=29.515026
: (,) : 0.815806 min=0.810054 max=0.962029, sd=27.898920
: (,) : 0.817358 min=0.553375 max=0.960826, sd=39.964111
: (,) : 0.818157 min=0.723989 max=0.931619, sd=20.796185
: (,) : 0.821157 min=0.815103 max=0.945559, sd=30.023014
: (,) : 0.821407 min=0.575552 max=0.958943, sd=41.523037
: (,) : 0.821567 min=0.740057 max=0.931550, sd=11.429000
: (,) : 0.821830 min=0.778294 max=0.956450, sd=28.585604
: (,) : 0.823122 min=0.813342 max=0.953675, sd=35.274818
: (,) : 0.823791 min=0.830091 max=0.956633, sd=42.739384
: (,) : 0.826842 min=0.750164 max=0.960751, sd=8.835805
: (,) : 0.827690 min=0.568595 max=0.969311, sd=30.543201
: (,) : 0.828143 min=0.727661 max=0.933358, sd=13.682913
: (,) : 0.830045 min=0.574181 max=0.950994, sd=48.069145
: (,) : 0.831641 min=0.618019 max=0.939475, sd=50.981564
: (,) : 0.833958 min=0.827165 max=0.963935, sd=25.540611
: (,) : 0.835869 min=0.789372 max=0.966805, sd=26.814104
: (,) : 0.836005 min=0.812730 max=0.955963, sd=12.860432
: (,) : 0.836044 min=0.604176 max=0.956743, sd=19.173864
: ( ,) : 0.836234 min=0.787960 max=0.949651, sd=15.605202
: (,) : 0.836281 min=0.699476 max=0.967093, sd=24.709869
: (,) : 0.837824 min=0.593167 max=0.970227, sd=26.464079
: (,) : 0.840960 min=0.553339 max=0.948325, sd=36.042049
: (,) : 0.841294 min=0.758295 max=0.973126, sd=34.514381
: (,) : 0.841896 min=0.590983 max=0.962583, sd=50.893532
: (,) : 0.843767 min=0.806483 max=0.963405, sd=25.815924
: (,) : 0.845366 min=0.722404 max=0.954271, sd=37.854237
: (,) : 0.845988 min=0.744495 max=0.955452, sd=35.659744
: (,) : 0.848209 min=0.794219 max=0.964603, sd=12.703241
: (,) : 0.849532 min=0.735853 max=0.953528, sd=25.841204
: (,) : 0.850685 min=0.720676 max=0.973533, sd=42.023205
: (,) : 0.854030 min=0.763552 max=0.957243, sd=50.512386
: ( ,) : 0.854542 min=0.694400 max=0.950297, sd=31.094616
: (,) : 0.855381 min=0.586259 max=0.964453, sd=26.304533
: ( ,) : 0.855954 min=0.769122 max=0.972207, sd=20.885775
: ( ,) : 0.856343 min=0.773897 max=0.969731, sd=20.200569
: ( ,) : 0.857231 min=0.660279 max=0.956343, sd=32.089931
: (,) : 0.858417 min=0.864698 max=0.961342, sd=28.840944
: (,) : 0.859689 min=0.874637 max=0.968092, sd=35.191395
: (,) : 0.859825 min=0.732891 max=0.969872, sd=21.927061
: ( ,) : 0.860233 min=0.817094 max=0.950137, sd=42.408623
: (,) : 0.861762 min=0.729305 max=0.938121, sd=32.645248
: (,) : 0.861990 min=0.760457 max=0.954904, sd=21.279266
: (,) : 0.863062 min=0.803295 max=0.972987, sd=31.389893
: (,) : 0.864507 min=0.835527 max=0.959412, sd=20.633755
: (,) : 0.865973 min=0.786729 max=0.961551, sd=14.772161
: (,) : 0.866957 min=0.723921 max=0.965726, sd=11.908808
: (,) : 0.868613 min=0.738751 max=0.978283, sd=37.001854
: (,) : 0.870105 min=0.705080 max=0.976399, sd=54.416012
: (,) : 0.870555 min=0.862716 max=0.963986, sd=52.231186
: (,) : 0.870636 min=0.690222 max=0.977169, sd=58.460876
: (,) : 0.871547 min=0.770074 max=0.969915, sd=34.714687
: (,) : 0.874115 min=0.807111 max=0.948065, sd=18.809776
: (,) : 0.874244 min=0.752791 max=0.974438, sd=49.741753
: (,) : 0.875194 min=0.829383 max=0.959214, sd=30.424299
: (,) : 0.875575 min=0.882799 max=0.965087, sd=29.212736
: (,) : 0.876628 min=0.789074 max=0.967728, sd=62.113373
: ( ,) : 0.876748 min=0.857133 max=0.972427, sd=23.289173
: (,) : 0.877818 min=0.833317 max=0.967093, sd=28.822382
: (,) : 0.878718 min=0.553808 max=0.966976, sd=46.079399
: (,) : 0.878864 min=0.688680 max=0.978990, sd=39.045341
: (,) : 0.882400 min=0.883747 max=0.967839, sd=11.069722
: (,) : 0.883863 min=0.666569 max=0.977000, sd=19.543068
: (,) : 0.884313 min=0.883567 max=0.971846, sd=25.047188
: (,) : 0.886579 min=0.776824 max=0.980528, sd=24.436762
: (,) : 0.887615 min=0.869838 max=0.963468, sd=15.290141
: (,) : 0.888368 min=0.835151 max=0.970944, sd=21.854877
: ( ,) : 0.888613 min=0.852755 max=0.977012, sd=20.664570
: (,) : 0.888915 min=0.701890 max=0.984152, sd=29.184855
: (,) : 0.889197 min=0.869495 max=0.974459, sd=11.696819
: (,) : 0.889327 min=0.768717 max=0.955065, sd=9.827321
: (,) : 0.890800 min=0.844556 max=0.972270, sd=45.839676
: ( ,) : 0.891264 min=0.842872 max=0.966874, sd=14.982453
: (,) : 0.891386 min=0.867655 max=0.976589, sd=21.863575
: ( ,) : 0.892803 min=0.558333 max=0.976258, sd=27.073399
: ( ,) : 0.894027 min=0.705994 max=0.960748, sd=47.561893
: (,) : 0.895706 min=0.875279 max=0.975085, sd=21.784636
: (,) : 0.896295 min=0.792583 max=0.952621, sd=30.285173
: (,) : 0.896768 min=0.902650 max=0.975427, sd=24.457178
: (,) : 0.897500 min=0.860278 max=0.969825, sd=25.603603
: (,) : 0.899012 min=0.742119 max=0.980758, sd=29.279078
---------------------------------------------------------------
Start for 100.000008 dpi image.
ImageSize = [pixel]
Extracted features = [pixel]
Filtered features = [pixel]
/ .
Done.
Max feature =
: ( ,) : 0.349771 min=0.360501 max=0.744216, sd=41.464252
: (, ) : 0.429173 min=0.450797 max=0.820948, sd=28.798695
: ( ,) : 0.495620 min=0.514524 max=0.820361, sd=55.195919
: (,) : 0.540511 min=0.554955 max=0.876519, sd=33.614693
: (,) : 0.550542 min=0.584428 max=0.874724, sd=44.443565
: (,) : 0.579497 min=0.577781 max=0.858645, sd=16.590513
: (, ) : 0.580266 min=0.609462 max=0.853004, sd=32.476265
: (,) : 0.603162 min=0.574921 max=0.914763, sd=40.661861
: (, ) : 0.609202 min=0.567525 max=0.890933, sd=38.770107
: (,) : 0.616884 min=0.606193 max=0.875591, sd=16.212690
: (,) : 0.628818 min=0.559989 max=0.900930, sd=27.543072
: (,) : 0.635330 min=0.626998 max=0.896662, sd=16.847752
: (,) : 0.650199 min=0.647228 max=0.913099, sd=49.786121
: (,) : 0.651661 min=0.594898 max=0.884969, sd=19.759203
: ( ,) : 0.658277 min=0.567431 max=0.797774, sd=41.324944
: ( ,) : 0.678970 min=0.587551 max=0.900196, sd=9.418509
: (,) : 0.680367 min=0.718519 max=0.903553, sd=26.929148
: (,) : 0.681953 min=0.608243 max=0.916120, sd=24.941013
: (,) : 0.684182 min=0.628596 max=0.899572, sd=19.304512
: (,) : 0.687030 min=0.691926 max=0.904222, sd=20.165924
: (,) : 0.689154 min=0.554634 max=0.882771, sd=31.895771
: (,) : 0.692668 min=0.553819 max=0.885160, sd=29.862997
: (,) : 0.698154 min=0.686290 max=0.910936, sd=27.024332
: (,) : 0.706138 min=0.584959 max=0.939056, sd=30.012547
: (, ) : 0.712576 min=0.613834 max=0.908894, sd=18.724792
: (,) : 0.714373 min=0.562389 max=0.940864, sd=49.591454
: (,) : 0.715808 min=0.675634 max=0.894476, sd=40.163506
: (,) : 0.716119 min=0.553789 max=0.909884, sd=40.418575
: (,) : 0.718154 min=0.555006 max=0.899249, sd=42.681839
: (,) : 0.718935 min=0.719889 max=0.912257, sd=25.185150
: ( ,) : 0.723047 min=0.618165 max=0.883976, sd=34.748173
: (,) : 0.724391 min=0.753250 max=0.932683, sd=35.783329
: (,) : 0.724423 min=0.727763 max=0.924733, sd=24.401085
: (,) : 0.725066 min=0.690492 max=0.903710, sd=30.823107
: (,) : 0.732351 min=0.614862 max=0.938736, sd=27.832005
: (,) : 0.735772 min=0.594621 max=0.926791, sd=27.280273
: ( ,) : 0.736865 min=0.673546 max=0.909998, sd=39.099915
: (,) : 0.737894 min=0.633605 max=0.939472, sd=30.476837
: (,) : 0.738853 min=0.659323 max=0.929609, sd=54.537189
: (,) : 0.739663 min=0.654575 max=0.935527, sd=8.129897
: (,) : 0.741649 min=0.550038 max=0.927463, sd=47.063629
: (,) : 0.742404 min=0.563019 max=0.938434, sd=36.728741
: (,) : 0.743374 min=0.608728 max=0.937417, sd=40.978153
: (,) : 0.746148 min=0.585350 max=0.942217, sd=45.961983
: (, ) : 0.753436 min=0.617630 max=0.877274, sd=31.570230
: ( ,) : 0.761727 min=0.681742 max=0.932394, sd=16.555164
: (,) : 0.765684 min=0.773074 max=0.937355, sd=33.883102
: ( ,) : 0.767817 min=0.567909 max=0.948462, sd=20.247709
: (,) : 0.768283 min=0.569190 max=0.913823, sd=34.821491
: (,) : 0.768309 min=0.666192 max=0.946166, sd=58.605701
: ( ,) : 0.770354 min=0.778513 max=0.925996, sd=38.811043
: (,) : 0.771773 min=0.574935 max=0.904084, sd=31.134045
: (,) : 0.774122 min=0.692096 max=0.922728, sd=16.165672
: (,) : 0.774494 min=0.716437 max=0.938284, sd=34.749088
: (,) : 0.777300 min=0.721448 max=0.943146, sd=49.991234
: (,) : 0.779303 min=0.764945 max=0.942154, sd=28.175735
: (,) : 0.780279 min=0.675982 max=0.933175, sd=27.235748
: (,) : 0.781473 min=0.559618 max=0.960531, sd=54.379498
: (,) : 0.783618 min=0.733629 max=0.951897, sd=27.815334
: (,) : 0.783918 min=0.747439 max=0.937585, sd=20.855389
: (,) : 0.785236 min=0.650604 max=0.949868, sd=61.160797
: (,) : 0.786531 min=0.578740 max=0.913663, sd=49.674171
: (,) : 0.788960 min=0.791741 max=0.932309, sd=29.295910
: ( ,) : 0.792241 min=0.742653 max=0.933782, sd=19.222088
: (,) : 0.794687 min=0.573511 max=0.945379, sd=35.262123
: (,) : 0.795262 min=0.654301 max=0.947514, sd=49.084759
: (,) : 0.795678 min=0.573610 max=0.956396, sd=20.190624
: (,) : 0.795682 min=0.776003 max=0.947548, sd=12.490466
: (,) : 0.797272 min=0.557524 max=0.948486, sd=63.610645
: (,) : 0.799923 min=0.555282 max=0.961721, sd=44.629402
: (,) : 0.802478 min=0.601059 max=0.943534, sd=35.261177
: (,) : 0.804194 min=0.710041 max=0.922557, sd=40.691563
: (,) : 0.806315 min=0.608797 max=0.944379, sd=48.967579
: (,) : 0.808142 min=0.576898 max=0.961420, sd=47.375114
: (,) : 0.810069 min=0.777759 max=0.936012, sd=49.606281
: (,) : 0.813310 min=0.749286 max=0.952836, sd=15.288591
: (,) : 0.813820 min=0.711653 max=0.959155, sd=26.287123
: (,) : 0.814018 min=0.727951 max=0.945214, sd=15.996302
: (,) : 0.814950 min=0.623571 max=0.934842, sd=48.547501
: (,) : 0.816466 min=0.811953 max=0.953758, sd=26.179842
: (,) : 0.817719 min=0.609840 max=0.957496, sd=42.775417
: (,) : 0.818825 min=0.582188 max=0.937556, sd=15.957503
: ( ,) : 0.821449 min=0.768726 max=0.962716, sd=22.648594
: (,) : 0.821810 min=0.679549 max=0.969090, sd=31.047991
: (,) : 0.823769 min=0.737173 max=0.916993, sd=26.225739
: (,) : 0.826986 min=0.850557 max=0.959225, sd=28.628393
: (,) : 0.827244 min=0.798162 max=0.945608, sd=19.601036
: (,) : 0.830883 min=0.607147 max=0.965684, sd=54.631756
: (,) : 0.836093 min=0.793517 max=0.968007, sd=31.316650
: ( ,) : 0.836616 min=0.653788 max=0.952659, sd=42.899467
: (,) : 0.837480 min=0.763232 max=0.934290, sd=22.683899
: (,) : 0.838315 min=0.715505 max=0.965667, sd=54.165775
: (,) : 0.838711 min=0.793895 max=0.959914, sd=62.036308
: (,) : 0.839506 min=0.767848 max=0.931084, sd=35.545204
: (,) : 0.839917 min=0.555733 max=0.956972, sd=52.317551
: (,) : 0.841604 min=0.861368 max=0.963973, sd=20.879715
: (,) : 0.842808 min=0.754224 max=0.954782, sd=54.285854
: (,) : 0.845329 min=0.553511 max=0.926626, sd=41.643665
: ( ,) : 0.846493 min=0.833716 max=0.968426, sd=25.085428
: (,) : 0.846976 min=0.725040 max=0.952806, sd=38.080383
: (,) : 0.847458 min=0.755793 max=0.957917, sd=12.502056
: (,) : 0.849991 min=0.842787 max=0.951000, sd=54.654308
: (,) : 0.851661 min=0.574917 max=0.971784, sd=30.201307
: ( ,) : 0.852652 min=0.766265 max=0.971219, sd=22.590155
: (,) : 0.852832 min=0.699309 max=0.968999, sd=59.428711
: (,) : 0.852927 min=0.862234 max=0.959935, sd=26.915020
: (,) : 0.862949 min=0.723908 max=0.977276, sd=26.256006
: ( ,) : 0.863810 min=0.805212 max=0.972493, sd=19.950893
: (,) : 0.864329 min=0.805604 max=0.943216, sd=30.024204
: (,) : 0.865367 min=0.781967 max=0.963534, sd=67.723061
: (,) : 0.865708 min=0.737720 max=0.973541, sd=22.597073
: (,) : 0.866283 min=0.699912 max=0.969503, sd=29.106453
: (,) : 0.866821 min=0.826003 max=0.972615, sd=20.816010
: (,) : 0.868287 min=0.869113 max=0.959400, sd=27.837845
: (,) : 0.870643 min=0.864857 max=0.969128, sd=25.967972
: (,) : 0.870670 min=0.792058 max=0.972979, sd=34.387306
: (,) : 0.871728 min=0.858575 max=0.964524, sd=33.288044
: ( ,) : 0.872096 min=0.604563 max=0.956886, sd=36.394798
: (,) : 0.872780 min=0.869573 max=0.963620, sd=29.785576
: (,) : 0.873608 min=0.851892 max=0.969760, sd=32.824219
: (,) : 0.874400 min=0.744619 max=0.963165, sd=30.772835
: (,) : 0.878943 min=0.781091 max=0.975440, sd=45.422569
: ( ,) : 0.879397 min=0.814378 max=0.975241, sd=32.467449
: (,) : 0.880246 min=0.843402 max=0.963770, sd=14.246877
: (,) : 0.880284 min=0.828107 max=0.973935, sd=19.723745
: ( ,) : 0.880380 min=0.559535 max=0.967921, sd=28.355925
: (,) : 0.880651 min=0.871150 max=0.972230, sd=26.882008
: (,) : 0.888315 min=0.724110 max=0.981333, sd=43.108688
: (,) : 0.891364 min=0.593559 max=0.945580, sd=32.062984
: (,) : 0.893007 min=0.726803 max=0.979778, sd=23.888241
: (,) : 0.893668 min=0.838500 max=0.968492, sd=29.345287
: (,) : 0.895055 min=0.643808 max=0.981625, sd=56.210423
: (,) : 0.897087 min=0.774011 max=0.979710, sd=24.162752
: (,) : 0.898018 min=0.887572 max=0.975908, sd=80.565010
: (,) : 0.898896 min=0.861754 max=0.979334, sd=22.827488
---------------------------------------------------------------
Start for 79.370056 dpi image.
ImageSize = [pixel]
Extracted features = [pixel]
Filtered features = [pixel]
/ .
Done.
Max feature =
: (,) : 0.424587 min=0.495490 max=0.841241, sd=33.538174
: (,) : 0.574265 min=0.568550 max=0.848501, sd=16.525414
: (,) : 0.574748 min=0.559441 max=0.872997, sd=38.725376
: (,) : 0.581560 min=0.550665 max=0.893702, sd=30.718977
: (,) : 0.585792 min=0.567457 max=0.861221, sd=43.476383
: (, ) : 0.607475 min=0.626667 max=0.851842, sd=25.428596
: (,) : 0.615521 min=0.570816 max=0.862881, sd=32.116570
: (,) : 0.629906 min=0.550059 max=0.890384, sd=26.679115
: (,) : 0.633249 min=0.558702 max=0.838462, sd=16.410463
: ( ,) : 0.655022 min=0.556795 max=0.809541, sd=44.237373
: (,) : 0.663904 min=0.616690 max=0.902155, sd=47.889595
: (,) : 0.664576 min=0.575173 max=0.918581, sd=48.777203
: (,) : 0.669407 min=0.694718 max=0.916036, sd=32.513351
: (, ) : 0.671808 min=0.606392 max=0.854163, sd=34.949917
: ( ,) : 0.674519 min=0.668164 max=0.886650, sd=38.646778
: (,) : 0.678237 min=0.652017 max=0.926134, sd=38.604790
: (,) : 0.680022 min=0.651290 max=0.889282, sd=24.601427
: (,) : 0.680802 min=0.637456 max=0.873574, sd=35.485271
: (,) : 0.682513 min=0.718521 max=0.912211, sd=48.597336
: ( ,) : 0.685274 min=0.563088 max=0.913361, sd=39.962543
: (,) : 0.699254 min=0.657650 max=0.888837, sd=17.774458
: (,) : 0.700724 min=0.602724 max=0.916041, sd=28.082132
: ( ,) : 0.701424 min=0.598771 max=0.906770, sd=13.176127
: (,) : 0.707155 min=0.656612 max=0.900852, sd=23.163576
: (, ) : 0.707671 min=0.620504 max=0.895905, sd=38.397793
: (,) : 0.709412 min=0.653853 max=0.892614, sd=31.383821
: (,) : 0.713921 min=0.567554 max=0.883052, sd=43.222118
: (,) : 0.721515 min=0.580028 max=0.920115, sd=31.940937
: (, ) : 0.723166 min=0.588885 max=0.909064, sd=18.062485
: (,) : 0.724533 min=0.553878 max=0.932290, sd=44.227341
: (,) : 0.728015 min=0.685503 max=0.918389, sd=35.047256
: (,) : 0.731852 min=0.568805 max=0.895599, sd=26.331055
: (,) : 0.731864 min=0.661568 max=0.914380, sd=16.817749
: ( ,) : 0.735963 min=0.629409 max=0.909261, sd=43.005833
: (,) : 0.753156 min=0.589768 max=0.933392, sd=50.755322
: (,) : 0.754838 min=0.639366 max=0.934599, sd=21.371698
: (,) : 0.756133 min=0.755408 max=0.934132, sd=24.268871
: (,) : 0.758750 min=0.709395 max=0.930400, sd=43.539856
: (,) : 0.759112 min=0.665806 max=0.928001, sd=16.578856
: (,) : 0.760905 min=0.758426 max=0.925954, sd=31.667768
: (,) : 0.762531 min=0.552516 max=0.917358, sd=59.276340
: (,) : 0.765042 min=0.658591 max=0.928408, sd=26.152805
: (,) : 0.766182 min=0.645952 max=0.950609, sd=34.620697
: (,) : 0.766313 min=0.617227 max=0.925215, sd=40.149860
: (, ) : 0.768620 min=0.562859 max=0.902211, sd=33.340858
: (,) : 0.771844 min=0.569429 max=0.952980, sd=52.301632
: (,) : 0.771881 min=0.611211 max=0.940073, sd=56.177685
: ( ,) : 0.775593 min=0.553823 max=0.945913, sd=23.561525
: (,) : 0.782274 min=0.585329 max=0.928564, sd=44.898174
: (,) : 0.783475 min=0.616240 max=0.956559, sd=51.606834
: (,) : 0.784641 min=0.773819 max=0.921683, sd=52.746880
: (,) : 0.784750 min=0.712745 max=0.942072, sd=46.240128
: (,) : 0.786412 min=0.553672 max=0.941945, sd=53.564259
: (,) : 0.787911 min=0.798048 max=0.943097, sd=27.948755
: ( ,) : 0.787959 min=0.670910 max=0.956550, sd=22.670534
: (,) : 0.796028 min=0.722197 max=0.925336, sd=19.043421
: (,) : 0.796624 min=0.774988 max=0.935034, sd=27.751265
: (,) : 0.801342 min=0.570171 max=0.929650, sd=48.721424
: (,) : 0.802855 min=0.704131 max=0.903552, sd=32.415211
: (,) : 0.803728 min=0.735531 max=0.937777, sd=35.249271
: (,) : 0.816205 min=0.808897 max=0.954073, sd=23.818476
: (,) : 0.817869 min=0.696211 max=0.937664, sd=23.392765
: (,) : 0.819297 min=0.662518 max=0.955639, sd=45.326519
: (,) : 0.821661 min=0.731614 max=0.960118, sd=36.159546
: ( ,) : 0.822996 min=0.782434 max=0.964339, sd=25.203840
: ( ,) : 0.829268 min=0.722506 max=0.956091, sd=33.387890
: (,) : 0.830372 min=0.682733 max=0.974954, sd=35.768021
: (,) : 0.832604 min=0.691795 max=0.948959, sd=55.398605
: (,) : 0.833067 min=0.795034 max=0.950528, sd=24.224396
: (,) : 0.833721 min=0.697016 max=0.953199, sd=62.431587
: ( ,) : 0.835240 min=0.743466 max=0.962460, sd=28.871698
: (,) : 0.835508 min=0.641716 max=0.968347, sd=58.081131
: (,) : 0.837043 min=0.799750 max=0.957189, sd=32.878773
: (,) : 0.838220 min=0.552711 max=0.951419, sd=35.211857
: (,) : 0.839198 min=0.821844 max=0.942766, sd=33.345402
: (,) : 0.840291 min=0.830696 max=0.961088, sd=31.853945
: (,) : 0.844873 min=0.818146 max=0.956324, sd=34.399776
: ( ,) : 0.844943 min=0.621022 max=0.949541, sd=37.764103
: (,) : 0.845700 min=0.810804 max=0.953110, sd=14.134200
: ( ,) : 0.846210 min=0.686036 max=0.971412, sd=27.332991
: (,) : 0.847355 min=0.761658 max=0.934810, sd=25.801853
: ( ,) : 0.849379 min=0.556978 max=0.939926, sd=31.266600
: ( ,) : 0.858980 min=0.840427 max=0.964846, sd=28.677284
: (,) : 0.862735 min=0.872237 max=0.970159, sd=32.134697
: (,) : 0.862884 min=0.800279 max=0.964310, sd=49.752388
: (,) : 0.863833 min=0.747059 max=0.979435, sd=45.216511
: (,) : 0.866536 min=0.715012 max=0.973130, sd=40.093792
: (,) : 0.868468 min=0.763651 max=0.974714, sd=58.789257
: (,) : 0.868802 min=0.729907 max=0.961441, sd=56.564838
: (,) : 0.870879 min=0.763004 max=0.973176, sd=58.681850
: (,) : 0.874254 min=0.881908 max=0.970896, sd=31.454390
: (,) : 0.879686 min=0.762893 max=0.976885, sd=47.450890
: (,) : 0.881814 min=0.882721 max=0.967957, sd=32.738708
: (,) : 0.882507 min=0.872872 max=0.968983, sd=20.447971
: ( ,) : 0.884201 min=0.817418 max=0.973225, sd=20.495485
: (,) : 0.884335 min=0.824047 max=0.957199, sd=31.815765
: (, ) : 0.885706 min=0.709386 max=0.981219, sd=11.307715
: (,) : 0.891750 min=0.843875 max=0.961289, sd=29.145561
---------------------------------------------------------------
Start for 62.996056 dpi image.
ImageSize = [pixel]
Extracted features = [pixel]
Filtered features = [pixel]
/ .
Done.
Max feature =
: (,) : 0.299073 min=0.304809 max=0.759917, sd=32.745316
: (,) : 0.442451 min=0.468650 max=0.852405, sd=42.800758
: (,) : 0.522291 min=0.532134 max=0.832662, sd=19.292013
: (,) : 0.555949 min=0.566430 max=0.818171, sd=32.972832
: (,) : 0.579144 min=0.599708 max=0.885088, sd=31.428690
: (, ) : 0.597356 min=0.563315 max=0.838101, sd=24.265625
: ( ,) : 0.610389 min=0.558533 max=0.839348, sd=37.398823
: (, ) : 0.642492 min=0.562582 max=0.910453, sd=27.557285
: (,) : 0.642625 min=0.647387 max=0.888142, sd=36.778751
: (,) : 0.655644 min=0.607522 max=0.888964, sd=18.774765
: (,) : 0.657492 min=0.605634 max=0.900354, sd=21.833158
: (,) : 0.658648 min=0.580634 max=0.875339, sd=28.909412
: (,) : 0.660399 min=0.594899 max=0.871427, sd=41.966988
: (,) : 0.663473 min=0.615330 max=0.870816, sd=50.706532
: ( ,) : 0.666142 min=0.584288 max=0.796997, sd=44.584316
: (,) : 0.669973 min=0.557561 max=0.886984, sd=36.507587
: (,) : 0.678793 min=0.555734 max=0.922214, sd=51.067528
: (,) : 0.682467 min=0.583947 max=0.883672, sd=32.440998
: (,) : 0.684187 min=0.559310 max=0.916330, sd=43.400223
: (,) : 0.689893 min=0.553736 max=0.890511, sd=35.821602
: (,) : 0.698504 min=0.557189 max=0.904574, sd=27.466637
: (,) : 0.698831 min=0.568155 max=0.895427, sd=40.536594
: ( ,) : 0.725661 min=0.559957 max=0.916791, sd=35.221291
: (,) : 0.728531 min=0.707978 max=0.893694, sd=49.709797
: ( ,) : 0.730254 min=0.614685 max=0.896509, sd=48.425060
: (,) : 0.736482 min=0.695286 max=0.911938, sd=34.966595
: (, ) : 0.743005 min=0.676776 max=0.887349, sd=31.384359
: (,) : 0.744255 min=0.611384 max=0.929750, sd=53.099842
: (,) : 0.745581 min=0.713959 max=0.927647, sd=23.504589
: (,) : 0.747095 min=0.629141 max=0.908642, sd=24.382439
: (,) : 0.748735 min=0.667454 max=0.915189, sd=36.248268
: ( ,) : 0.750530 min=0.621623 max=0.944685, sd=23.935856
: (,) : 0.751193 min=0.552309 max=0.936504, sd=48.880821
: (,) : 0.753600 min=0.732554 max=0.925742, sd=25.132555
: (, ) : 0.756253 min=0.734319 max=0.884349, sd=37.938808
: ( ,) : 0.756988 min=0.690384 max=0.918900, sd=17.579617
: (,) : 0.760528 min=0.729659 max=0.946594, sd=32.205280
: ( ,) : 0.763886 min=0.569165 max=0.962252, sd=30.607454
: (,) : 0.764020 min=0.751454 max=0.930103, sd=27.746256
: (,) : 0.766336 min=0.572956 max=0.935878, sd=60.856461
: ( ,) : 0.773962 min=0.570268 max=0.905427, sd=30.422049
: (,) : 0.777244 min=0.585151 max=0.950410, sd=54.523579
: (,) : 0.777600 min=0.550693 max=0.945888, sd=51.436474
: (,) : 0.782334 min=0.799339 max=0.939470, sd=38.733139
: (, ) : 0.783281 min=0.681836 max=0.903799, sd=36.793564
: (,) : 0.796063 min=0.708768 max=0.926375, sd=21.610285
: (,) : 0.798618 min=0.595742 max=0.955567, sd=55.855915
: ( ,) : 0.801412 min=0.592979 max=0.937581, sd=36.052185
: (,) : 0.804453 min=0.748329 max=0.949197, sd=32.405952
: (,) : 0.808169 min=0.688386 max=0.911626, sd=28.636442
: (,) : 0.809441 min=0.732770 max=0.930859, sd=25.023130
: (,) : 0.810944 min=0.826716 max=0.954733, sd=36.062248
: (,) : 0.821105 min=0.781620 max=0.950627, sd=36.201202
: (,) : 0.825273 min=0.758560 max=0.943409, sd=13.854691
: (,) : 0.826479 min=0.774573 max=0.955824, sd=32.626545
: (,) : 0.826928 min=0.759029 max=0.939734, sd=48.020237
: (,) : 0.827072 min=0.842281 max=0.957651, sd=37.085400
: (,) : 0.829749 min=0.709671 max=0.956223, sd=54.552681
: (,) : 0.831481 min=0.772146 max=0.956499, sd=40.525841
: (,) : 0.833032 min=0.636060 max=0.960499, sd=53.648716
: (,) : 0.835733 min=0.706491 max=0.948475, sd=57.130863
: (,) : 0.846487 min=0.736950 max=0.949449, sd=35.986832
: (, ) : 0.848287 min=0.819719 max=0.960537, sd=20.586964
: (,) : 0.853023 min=0.674944 max=0.976931, sd=43.385296
: (,) : 0.855907 min=0.814666 max=0.962084, sd=64.798088
: (, ) : 0.857782 min=0.658946 max=0.974178, sd=9.765615
: (,) : 0.859072 min=0.721597 max=0.964489, sd=64.371178
: (,) : 0.863501 min=0.847128 max=0.957214, sd=30.939293
: (,) : 0.867711 min=0.800812 max=0.967650, sd=39.102413
: (,) : 0.871376 min=0.724515 max=0.966266, sd=48.850288
: ( ,) : 0.876220 min=0.845073 max=0.971295, sd=42.473747
: (,) : 0.892422 min=0.717912 max=0.979466, sd=28.400930
: (, ) : 0.892945 min=0.786420 max=0.979330, sd=20.448406
: (,) : 0.896210 min=0.851089 max=0.980158, sd=41.161392
: (,) : 0.898482 min=0.736852 max=0.979373, sd=40.656662
: ( ,) : 0.898493 min=0.820945 max=0.958475, sd=29.872866
---------------------------------------------------------------
Start for 50.000000 dpi image.
ImageSize = [pixel]
Extracted features = [pixel]
Filtered features = [pixel]
/ .
Done.
Max feature =
: (,) : 0.409095 min=0.423076 max=0.786830, sd=38.354855
: (,) : 0.565809 min=0.609225 max=0.883308, sd=27.912880
: (,) : 0.576045 min=0.579438 max=0.813340, sd=21.002932
: (,) : 0.579516 min=0.587601 max=0.884169, sd=38.661457
: (,) : 0.644444 min=0.625607 max=0.872402, sd=40.615192
: (,) : 0.656507 min=0.591580 max=0.855815, sd=43.474426
: (, ) : 0.657504 min=0.555764 max=0.898058, sd=30.923130
: (, ) : 0.662833 min=0.576045 max=0.902070, sd=26.458992
: (,) : 0.662949 min=0.665047 max=0.875006, sd=49.367023
: ( ,) : 0.670349 min=0.561400 max=0.865629, sd=37.549335
: (,) : 0.675475 min=0.555582 max=0.905002, sd=48.826569
: (,) : 0.677357 min=0.646990 max=0.927771, sd=27.972940
: ( ,) : 0.686276 min=0.550450 max=0.910061, sd=53.431999
: (,) : 0.689275 min=0.618263 max=0.907108, sd=31.436350
: (,) : 0.709105 min=0.581470 max=0.902980, sd=40.365704
: (,) : 0.713734 min=0.673753 max=0.908628, sd=50.451111
: (, ) : 0.714805 min=0.704401 max=0.883490, sd=31.044941
: ( ,) : 0.716260 min=0.604710 max=0.933287, sd=26.231071
: ( ,) : 0.717083 min=0.556839 max=0.948899, sd=29.302229
: (,) : 0.718400 min=0.567854 max=0.910843, sd=47.042545
: (,) : 0.720351 min=0.730358 max=0.906248, sd=25.519068
: (,) : 0.720452 min=0.635529 max=0.935623, sd=45.270584
: (,) : 0.729541 min=0.752331 max=0.915800, sd=54.769844
: (,) : 0.730325 min=0.650699 max=0.904523, sd=28.654446
: (,) : 0.734137 min=0.726759 max=0.906466, sd=32.581650
: ( ,) : 0.742655 min=0.622288 max=0.815669, sd=40.283253
: (,) : 0.745526 min=0.664041 max=0.940655, sd=36.527069
: (,) : 0.752473 min=0.553108 max=0.913527, sd=40.662380
: (,) : 0.754339 min=0.768570 max=0.938685, sd=34.522438
: (, ) : 0.781405 min=0.728405 max=0.901987, sd=37.145031
: ( ,) : 0.797876 min=0.558383 max=0.915193, sd=32.620537
: ( ,) : 0.799267 min=0.722797 max=0.931799, sd=40.063858
: (,) : 0.799847 min=0.774071 max=0.929137, sd=28.837950
: (,) : 0.803153 min=0.607517 max=0.961875, sd=44.224556
: (,) : 0.805617 min=0.606686 max=0.948058, sd=57.030193
: (, ) : 0.806086 min=0.553510 max=0.963031, sd=8.954105
: (,) : 0.813065 min=0.590033 max=0.949263, sd=49.212040
: ( ,) : 0.814844 min=0.726460 max=0.922312, sd=27.738249
: (,) : 0.854165 min=0.788547 max=0.963051, sd=63.804325
: ( , ) : 0.863481 min=0.822804 max=0.965674, sd=48.539753
: (,379) : 0.864024 min=0.814080 max=0.966658, sd=43.544121
: (,) : 0.868105 min=0.831030 max=0.970583, sd=46.397461
: (, ) : 0.877267 min=0.830728 max=0.967012, sd=36.181847
: (,) : 0.886550 min=0.733276 max=0.976608, sd=42.743977
: ( , ) : 0.897586 min=0.874908 max=0.975650, sd=26.763504
---------------------------------------------------------------
Done.
Saving FeatureSet...
Done.
Generating FeatureSet3...
(, ) 120.000000[dpi]
Freak features - ========= ===========
(, ) 100.000008[dpi]
Freak features - ========= ===========
(, ) 79.370056[dpi]
Freak features - ========= ===========
(, ) 62.996056[dpi]
Freak features - ========= ===========
(, ) 50.000000[dpi]
Freak features - ========= ===========
Done.
Saving FeatureSet3...
Done.
Generator finished at -- :: +
--
  • 查看特征点

After launching dispFeatureSet, the various image resolutions will be displayed on screen with the tracking features overlaid. The features used in continuous tracking are outlined by red boxes, and the features used in identifying the pages andinitializing tracking are marked by green crosses.

Debugging Marker Recognition Problems

If you also wish to display pose-estimates errors or wish to check recognition of template markers, you will need to define a multi-marker configuration file first.

By default, check_id reads its multimarker configuration from up to two multimarker configuration files specified on the command line. You can test (for example) using the pre-supplied file Data/cubeMarkerConfig.dat (which is set to track the cube marker whose image is supplied in PDF form in doc/patterns/Cubes/cube00-05-a4.pdf or /doc/patterns/Cubes/cube00-05-latter.pdfusing the following launch syntax. On Linux / OS X, type:

   #the number of patterns to be recognized

   #marker 

   40.0
1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 #marker 40.0
1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 30.0000
0.0000 -1.0000 0.0000 -30.0000 #marker 40.0
0.0000 0.0000 1.0000 30.0000
0.0000 1.0000 0.0000 0.0000
-1.0000 0.0000 0.0000 -30.0000 #marker 40.0
1.0000 0.0000 0.0000 0.0000
0.0000 -1.0000 0.0000 0.0000
0.0000 0.0000 -1.0000 -60.0000 #marker 40.0
1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -1.0000 -30.0000
0.0000 1.0000 0.0000 -30.0000 #marker 40.0
0.0000 0.0000 -1.0000 -30.0000
0.0000 1.0000 0.0000 0.0000
1.0000 0.0000 0.0000 -30.0000

cubeMarkerConfig.dat

日后再说。

[Artoolkit] Marker Training的更多相关文章

  1. [Artoolkit] Marker of nftSimple

    重点看:markers.dat 的解析原理 1. int main(int argc, char** argv) { ]; const char *cparam_name = "Data2/ ...

  2. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  3. 【AR实验室】ARToolKit之制作自己的Marker/NFT

    0x00 - 前言 看过example后,就会想自己动动手,这里改改那里修修.我们先试着添加自己喜欢的marker/nft进行识别. 比如我做了一个法拉利的marker: 还有网上找了一个法拉利log ...

  4. 【AR实验室】ARToolKit之Example篇

    0x00 - 前言 PS : 我突然意识到ARToolKit本质可能就是一个可以实时求解相机内外参的解决方案. 拿到一个新的SDK,90%的人应该都会先跑一下Example.拿到ARToolKit的S ...

  5. 【AR实验室】ARToolKit之概述篇

    0x00 - 前言 我从去年就开始对AR(Augmented Reality)技术比较关注,但是去年AR行业一直处于偶尔发声的状态,丝毫没有其"异姓同名"的兄弟VR(Virtual ...

  6. [Artoolkit] ARToolKit's SDK Structure on Android

    Most applications on Android are developed in Java, and Android provides a rich framework of classes ...

  7. [Artoolkit] Framework Analysis of nftSimple

    What is nftSimple? Loads NFT dataset names from a configuration file. The example uses the “Pinball. ...

  8. [Artoolkit] Android Sample of nftSimple

    结合:[Artoolkit] ARToolKit's SDK Structure on Android 重难点:aRBaseLib/, nftSimple/, libcpufeatures.a aRB ...

  9. [Artoolkit] ARSimpleNativeCarsProj for Multi Markers Tracking

    效果简直了,但代码架构有点坑,慢慢道来. libc++_shared.so应该是c++的库:libARWrapperNativeCaresExample.so也有对应的c++文件:那么,libARWr ...

随机推荐

  1. CocosCreator的Sprite的更换

    先上图,左侧是运行的效果, cc.Class({ extends: cc.Component, /* * cocos creator动态更换纹理 *方法一,预先在编辑器里设置好所有的纹理,绑定到对应的 ...

  2. java获取文件列表,并按照目录的深度及文件名的拼音的升序排列

    java实现在线浏览zip文件及文件下载 首先用java读出目录或是zip下的所有文件 1KG_20140718_HD/Readme-说明.htm:3.00KB1KG_20140718_HD/一键GH ...

  3. BTrace使用小结

    简介 BTrace是一个安全的JVM动态追踪工具,最初为原Sun公司Kenai项目下面的一个子项目. 典型的使用场景是,“我要查个问题,可那个方法没有打印入口参数和返回结果日志”,“我想看某个方法的执 ...

  4. Gson全解析(中)-TypeAdapter的使用

    TypeAdapter介绍 前面的Gson全解析(上)中我们理解并分别运用了JsonSerializer和JsonDeserializer进行JSON和java实体类之间的相互转化.这里利用TypeA ...

  5. boolean和Boolean, char和Character , byte和Byte, short和Short, int和Integer , long和Long , float和Float, double和Double的区别 , String和StringBuffer的区别

    Java提供两种不同的类型:引用类型和原始类型(内置类型).Int是java的原始数据类型,Integer是java为int提供的封装类. Java为每个原始数据类型提供了封装类. 其中原始数据类型封 ...

  6. Tensorflow 之finetune微调模型方法&&不同层上设置不同的学习率

    在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VG ...

  7. hive在命令行消除进度等错误信息

    大家在使用shell脚本调用hive命令的时候,发现hive的中间过程竟然打印到错误输出流里面,这样在查看错误日志的时候,需要过滤这些没用的信息,那么可以使用如下的配置参数. set hive.ses ...

  8. [BetterExplained]书写是为了更好的思考

    我经常在走路和睡前总结所学过的内容,思考遗留的问题,一段时间的阅读和思考之后,一个总体的知识框架就会逐渐浮现在脑海中.然后我会将它书写下来,然而,我往往非常惊讶地发现,当我书写的时候,新的内容仍然源源 ...

  9. MySQL 聚簇索引&&二级索引&&辅助索引

    MySQL非聚簇索引&&二级索引&&辅助索引 mysql中每个表都有一个聚簇索引(clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅 ...

  10. 委托到Lambda的进化: ()=> {} 这个lambda表达式就是一个无参数的委托及具体方法的组合体。

    1.原始的委托 (.net 1.0) using System; using System.Collections.Generic; using System.ComponentModel; usin ...