(原)IOU的计算
转载请注明出处:
http://www.cnblogs.com/darkknightzh/p/9043395.html
参考网址:
https://github.com/deepinsight/insightface/blob/master/src/align/align_megaface.py中IOU的计算。
理解不对的地方敬请谅解。
IOU是两个矩形的交集与两个矩形并集的比值(可以这样理解吧)。
如下图所示:
黄色矩形起点坐标(x11,y11),终点坐标(x12,y12)
蓝色矩形起点坐标(x21,y21),终点坐标(x22,y22)。
则:
黄色矩形宽W1=x12-x11,高H1=y12-y11
黄色矩形宽W2=x22-x21,高H1=y22-y21
两个矩形交集(红色矩形)宽W=W1+W2-(x22-x11)=x12-x11
两个矩形交集(红色矩形)高H=H1+H2-(y22-y11)=y12-y11
红色矩形面积(两个矩形交集)为area=W*H
两个矩形并集为area1+area2-area
如果x12<x21或者y12<y21,说明两个矩形无公共区域,IOU=0;
否则,IOU=area/(area1+area2-area)
(原)IOU的计算的更多相关文章
- vga显示原理即相关计算
行扫描周期:完成一行扫描所需时间: 行时序时间(a,b,c,d,e):完成一个像素点显示得时间 场扫描周期:完成所有行(一帧扫描所需时间) 场时序时间(o,p,q,r,s):完成一行显示得时间,一个完 ...
- 目标检测——IoU 计算
Iou 的计算 我们先考虑一维的情况:令 \(A = [x_1,x_2], B = [y_1, y_2]\),若想要 \(A\) 与 \(B\) 有交集,需要满足如下情况: 简言之,要保证 \(A\) ...
- 使用Python的yield实现流计算模式
首先先提一下上一篇<如何猜出Y combinator>中用的方法太复杂了.其实在Lambda演算中实现递归的思想很简单,就是函数把自己作为第一个参数传入函数,然后后面就是简单的Lambda ...
- 原码 & 反码 & 补码 & 详解
本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希 ...
- CRC(Cyclic Redundancy Check)循环冗余校验码与海明码的计算题
(17)采用CRC进行差错校验,生成多项式为G(X)=X4+X+1,信息码字为10111,则计算出的CRC校验码是 (17) .A.0000 B.0100 C.0010 D.1100试题 ...
- 原代码,反码,解释和具体的补充 Java在>>和>>>差异
前两天分析 HashMap 的 hash 算法的时间,会见 >> 和 >>> 这两个符号.然后检查以下信息,我脑子里在某一时刻.今天遇到,我没想到居然忘 0-0.... ...
- java 变量及数据类型、原码、反码、补码
Java基础——变量及数据类型 变量的概念 内存中的一个存储区域 变量名+数据类型 可在同一类型范围内不断变化 为什么定义变量: 用于不断的存放同一类型的常量,并可以重复使用 使用变量注意: 变量的作 ...
- Java 原码 反码 补码
本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希 ...
- 目标识别(object detection)中的 IoU(Intersection over Union)
首先直观上来看 IoU 的计算公式: 由上述图示可知,IoU 的计算综合考虑了交集和并集,如何使得 IoU 最大,需要满足,更大的重叠区域,更小的不重叠的区域. 两个矩形窗格分别表示: 左上点.右下点 ...
随机推荐
- POJ 2456 3258 3273 3104 3045(二分搜索-最大化最小值)
POJ 2456 题意 农夫约翰有N间牛舍排在一条直线上,第i号牛舍在xi的位置,其中有C头牛对牛舍不满意,因此经常相互攻击.需要将这C头牛放在离其他牛尽可能远的牛舍,也就是求最大化最近两头牛之间的距 ...
- 删除input上传的文件路径
上传文件时,选择了文件后想清空文件路径,搜索了一下,用两种方法解决 <input type="file" id="fileupload" name=&qu ...
- LOJ.115.[模板]无源汇有上下界可行流(Dinic)
题目链接 参考:http://blog.csdn.net/clove_unique/article/details/54884437 http://blog.csdn.net/wu_tongtong/ ...
- 潭州课堂25班:Ph201805201 第十一课 继承,多继承和魔术方法,属性和方法 (课堂笔记)
继承: class p : cls_name = 'p' def __init__(self): print('正在实例化') def __del__(self): print('正在销毁') cla ...
- C++ 经典知识点面试题
1.指针的优点和缺点 优点:灵活高效 (1)提高程序的编译效率和执行速度(数组下标往下移时,需要使用乘法和加法,而指针直接使用++即可) (2)通过指针可使用主调函数和被调函数之间共享变量或数据结构, ...
- js获取判断苹果手机机型
原先获取不了苹果系列的型号,但转换思路,先判断是否是苹果,再用分辨率获取型号 //获取手机型号函数beginfunction getPhoneType(){ //正则,忽略大小写var pattern ...
- webpack - HtmlWebpackPlugin理解
该插件的两个主要作用: 为html文件中引入的外部资源如script.link动态添加每次compile后的hash,防止引用缓存的外部文件问题 可以生成创建html入口文件,比如单页面可以生成一个h ...
- JDBC(7)—DAO
介绍: DAO(Data Access Object):数据访问对象 1.what:访问数据信息的类,包含了对数据的CRUD(create read.update.delete),而不包含业务相关的信 ...
- HDU4772(杭州赛区)
Zhuge Liang's Password Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- EasyUI学习总结(三)——easyloader源码分析(转载)
声明:这一篇文章是转载过来的,转载地址忘记了,原作者如果看到了,希望能够告知一声,我好加上去! easyloader模块是用来加载jquery easyui的js和css文件的,而且它可以分析模块的依 ...