Flink - TypeInformation
Flink 自己创建一套独立的类型系统,
参考, https://ci.apache.org/projects/flink/flink-docs-release-0.10/internals/types_serialization.html
为何要自己搞一套,而不像其他的平台一样让编程语言或serialization framework来天然做掉?
Flink tries to know as much information about what types enter and leave user functions as possible. This stands in contrast to the approach to just assuming nothing and letting the programming language and serialization framework handle all types dynamically.
To allow using POJOs and grouping/joining them by referring to field names, Flink needs the type information to make checks (for typos and type compatibility) before the job is executed.
The more we know, the better serialization and data layout schemes the compiler/optimizer can develop. That is quite important for the memory usage paradigm in Flink (work on serialized data inside/outside the heap and make serialization very cheap).
For the upcoming logical programs (see roadmap draft) we need this to know the “schema” of functions.
Finally, it also spares users having to worry about serialization frameworks and having to register types at those frameworks.
Note. POJOs是什么?Plain Old Java Object(简单的Java对象),即轻量java对象的花式叫法
主要的理由,
第一是要做类型检查,Flink支持比较灵活的基于field的join或group,需要先检查这个field是否可以作为key,或这个field是否可以做join或group
第二是性能优化,便于使用更好的序列化和数据的layout
Flink主要定义如下几种类型,
Internally, Flink makes the following distinctions between types:
Basic types: All Java primitives and their boxed form, plus
void
,String
, andDate
.Primitive arrays and Object arrays
Composite types
Flink Java Tuples (part of the Flink Java API)
Scala case classes (including Scala tuples)
POJOs: classes that follow a certain bean-like pattern
Scala auxiliary types (Option, Either, Lists, Maps, …)
Generic types: These will not be serialized by Flink itself, but by Kryo.
基本类型
数组(包含Primitive数组和对象数组)
组合类型,包含Flink Tuples, Scala case classes, 和POJOS
Scala增加的辅助类型
泛型,这个Flink不处理,而是用kryo
这里尤其需要注意POJOs,因为它的field是可以直接用name引用的,非常方便
dataSet.join(another).where("name").equalTo("personName")
那么对于Flink的准确的POJO的定义是什么?
- The class is public and standalone (no non-static inner class)
- The class has a public no-argument constructor
- All fields in the class (and all superclasses) are either public or or have a public getter and a setter method that follows the Java beans naming conventions for getters and setters.
很简单,只要满足上面的规范,就支持“by-name” field referencing
文档里面还描述了在Scala和Java API中的类型问题,
对于Scala,用manifest或typetag来解决了泛型擦除的问题,所以主要是Flink用macro实现了TypeInformation,便于使用
对于Java,就必须要解决泛型擦除的问题,
DataSet<SomeType> result = dataSet
.map(new MyGenericNonInferrableFunction<Long, SomeType>())
.returns(SomeType.class);
比如,上面的日志,如果不加最后的hints,在runtime其实是无法知道SomeType是什么的,在编译的时候已经被erase成Object
所以Flink使用returns原语来增加hints
来看看源码,
基类为,
package org.apache.flink.api.common.typeinfo;
TypeInformation
目的, This type information class acts as the tool
to generate serializers and comparators
to perform semantic checks such as whether the fields that are uses as join/grouping keys actually exist.
bridges between the programming languages object model and a logical flat schema
前两个目的好理解,
最后一个目的,搞清两个概念,
arity,the number of fields it contains directly
total number of fields,number of fields in the entire schema of this type, including nested types
举个例子,
* public class InnerType {
* public int id;
* public String text;
* }
*
* public class OuterType {
* public long timestamp;
* public InnerType nestedType;
* }
对于Inner type,arity和fields都是2
但对于OuterType,虽然arity是2,但fields是3,因为要把嵌套类型的fields也算上,这就是把编程语言对象模型转换为flat的逻辑schema
如何算fields的规则如下:
* <li>Basic types are indivisible and are considered a single field.</li>
* <li>Arrays and collections are one field</li>
* <li>Tuples and case classes represent as many fields as the class has fields</li>
IntegerTypeInfo
用这个作为例子,分析一下
public class IntegerTypeInfo<T> extends NumericTypeInfo<T>
public abstract class NumericTypeInfo<T> extends BasicTypeInfo<T>
public class BasicTypeInfo<T> extends TypeInformation<T> implements AtomicType<T>
可以看到Integer最终继承到BasicType,BasicType除了继承TypeInformation还实现AtomicType接口,
public interface AtomicType<T> { TypeComparator<T> createComparator(boolean sortOrderAscending, ExecutionConfig executionConfig);
}
* An atomic type is a type that is treated as one indivisible unit and where the entire type acts
* as a key.
* In contrast to atomic types are composite types, where the type information is aware of the individual
* fields and individual fields may be used as a key.
atomic类型就是不可分的类型,不像composite类型还包含其他的field,所以atomic本身整个作为key,基本类型如int肯定是属于atomic类型的
在BasicTypeInfo中定义了所有基本类型的TypeInfo,
public static final BasicTypeInfo<String> STRING_TYPE_INFO = new BasicTypeInfo<String>(String.class, new Class<?>[]{}, StringSerializer.INSTANCE, StringComparator.class);
public static final BasicTypeInfo<Boolean> BOOLEAN_TYPE_INFO = new BasicTypeInfo<Boolean>(Boolean.class, new Class<?>[]{}, BooleanSerializer.INSTANCE, BooleanComparator.class);
public static final BasicTypeInfo<Byte> BYTE_TYPE_INFO = new IntegerTypeInfo<Byte>(Byte.class, new Class<?>[]{Short.class, Integer.class, Long.class, Float.class, Double.class, Character.class}, ByteSerializer.INSTANCE, ByteComparator.class);
public static final BasicTypeInfo<Short> SHORT_TYPE_INFO = new IntegerTypeInfo<Short>(Short.class, new Class<?>[]{Integer.class, Long.class, Float.class, Double.class, Character.class}, ShortSerializer.INSTANCE, ShortComparator.class);
public static final BasicTypeInfo<Integer> INT_TYPE_INFO = new IntegerTypeInfo<Integer>(Integer.class, new Class<?>[]{Long.class, Float.class, Double.class, Character.class}, IntSerializer.INSTANCE, IntComparator.class);
public static final BasicTypeInfo<Long> LONG_TYPE_INFO = new IntegerTypeInfo<Long>(Long.class, new Class<?>[]{Float.class, Double.class, Character.class}, LongSerializer.INSTANCE, LongComparator.class);
public static final BasicTypeInfo<Float> FLOAT_TYPE_INFO = new FractionalTypeInfo<Float>(Float.class, new Class<?>[]{Double.class}, FloatSerializer.INSTANCE, FloatComparator.class);
public static final BasicTypeInfo<Double> DOUBLE_TYPE_INFO = new FractionalTypeInfo<Double>(Double.class, new Class<?>[]{}, DoubleSerializer.INSTANCE, DoubleComparator.class);
public static final BasicTypeInfo<Character> CHAR_TYPE_INFO = new BasicTypeInfo<Character>(Character.class, new Class<?>[]{}, CharSerializer.INSTANCE, CharComparator.class);
public static final BasicTypeInfo<Date> DATE_TYPE_INFO = new BasicTypeInfo<Date>(Date.class, new Class<?>[]{}, DateSerializer.INSTANCE, DateComparator.class);
public static final BasicTypeInfo<Void> VOID_TYPE_INFO = new BasicTypeInfo<Void>(Void.class, new Class<?>[]{}, VoidSerializer.INSTANCE, null);
可以看到Byte,short,int,long都用的是IntegerTypeInfo
创建的4个参数分别为,以INT_TYPE_INFO为例,
class对象,Integer.class
可能被cast成的类型,所以对于Integer,被cast成long,float,double,character都是可以的
Serializer对象
Comparator对象
可以看到flink重新封装了所有对象的Serializer和Comparator
我们看下LongSerializer,
@Override
public void serialize(Long record, DataOutputView target) throws IOException {
target.writeLong(record.longValue());
}
很高效的,对于Long,只会序列化真正的longValue,而不会存多余的东西
而NumericTypeInfo,只是一种特殊的BasicTypeInfo
private static final Set<Class<?>> numericalTypes = Sets.<Class<?>>newHashSet(
Integer.class,
Long.class,
Double.class,
Byte.class,
Short.class,
Float.class,
Character.class
);
只有上面这几种class对象,才被认为是NumericTypeInfo
而IntegerTypeInfo,只是范围的进一步缩小,
private static final Set<Class<?>> integerTypes = Sets.<Class<?>>newHashSet(
Integer.class,
Long.class,
Byte.class,
Short.class,
Character.class
);
除了上面的AtomicType,还有如array的typeinfo
比如,BasicArrayTypeInfo
Flink - TypeInformation的更多相关文章
- Kafka设计解析(二十)Apache Flink Kafka consumer
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...
- 【译】Apache Flink Kafka consumer
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...
- 【翻译】Flink Table Api & SQL —— 数据类型
本文翻译自官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/types.html Flink Table ...
- Apache Flink 1.9重磅发布!首次合并阿里内部版本Blink重要功能
8月22日,Apache Flink 1.9.0 版本正式发布,这也是阿里内部版本 Blink 合并入 Flink 后的首次版本发布.此次版本更新带来的重大功能包括批处理作业的批式恢复,以及 Tabl ...
- Flink 案例整合
1.概述 Flink 1.1.0 版本已经在官方发布了,官方博客于 2016-08-08 更新了 Flink 1.1.0 的变动.在这 Flink 版本的发布,添加了 SQL 语法这一特性.这对于业务 ...
- Flink - DataStream
先看例子, final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); D ...
- Flink - Working with State
All transformations in Flink may look like functions (in the functional processing terminology), but ...
- Flink - Juggling with Bits and Bytes
http://www.36dsj.com/archives/33650 http://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-B ...
- Flink Program Guide (8) -- Working with State :Fault Tolerance(DataStream API编程指导 -- For Java)
Working with State 本文翻译自Streaming Guide/ Fault Tolerance / Working with State ---------------------- ...
随机推荐
- JPA+Hibernate 3.3 ——基本属性映射
1.数据库中字段的数据类型为longtext 存放二进制文本的注解方式 private byte[] file; //设置延迟初始化 @Lob @Basic(fetch=FetchType.LA ...
- Node入门教程(11)第九章:Node 的网络模块
net网络模块 net模块是node对TCP或者IPC开发的封装,包括了客户端和服务器端相关API.对于阅读本文,请您有一定的网络编程的基础.您需要已经了解了: ip协议,会配置ip地址 了解dns解 ...
- emacs自动折行设置
- emacs自动折行 - 临时设置下 M-x `toggle-truncate-lines` - init.el 中添加 `(toggle-truncate-lines 1)`
- 【转】Web前端性能优化——如何提高页面加载速度
前言: 在同样的网络环境下,两个同样能满足你的需求的网站,一个“Duang”的一下就加载出来了,一个纠结了半天才出来,你会选择哪个?研究表明:用户最满意的打开网页时间是2-5秒,如果等待超过10秒, ...
- plsql 常用函数-转
PLSQL常用函数 1)处理字符的函数 || 或 CONCAT---并置运算符. 格式∶CONCAT(STRING1, STRING2) 例:’ABC’|| ’DE’=’ABCDE’ CONCAT(‘ ...
- ELK+Filebeat+Kafka+ZooKeeper 构建海量日志分析平台
日志分析平台,架构图如下: 架构解读 : (整个架构从左到右,总共分为5层) 第一层.数据采集层 最左边的是业务服务器集群,上面安装了filebeat做日志采集,同时把采集的日志分别发送给两个logs ...
- HAVANA 团队简介
在Ensembl 下载的gtf 文件中,会有一部分来源自 HAVANA havana 的全称叫做 human and vertebrate analysis and annotation, 是sag ...
- swoole webSocket服务
socket.php <?php //创建websocket服务器对象,监听0.0.0.0:9502端口 $ws = ); //监听WebSocket连接打开事件 (刚打开的时候会给客户端发送 ...
- Android进阶——深入浅出Handler(一)
Android进阶--深入浅出Handler(一) 在学习Handler之前,首先要学习一些基本概念,这将对之后的学习有所帮助. 主线程:Main Thread,又叫UI线程(UI Thread).A ...
- 【代码审计】大米CMS_V5.5.3 代码执行漏洞分析
0x00 环境准备 大米CMS官网:http://www.damicms.com 网站源码版本:大米CMS_V5.5.3试用版(更新时间:2017-04-15) 程序源码下载:http://www ...