Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.
  
题意:给定一个区间,找去这个区间里相邻的最近的和最远的两组素数。
思路:根据题目中的数据范围,可以看出要用到埃式筛法,直接暴力肯定是不行的,然后直接无脑写就行了,好吧这就是我调了两天才AC的原因,我用的是挑战程序设计竞赛的模板。。。。。。阿西吧。
一直过不了,不废话了,具体看代码中的注释吧。
  1 #include <map>
2 #include <set>
3 #include <list>
4 #include <stack>
5 #include <queue>
6 #include <deque>
7 #include <cmath>
8 #include <ctime>
9 #include <string>
10 #include <limits>
11 #include <cstdio>
12 #include <vector>
13 #include <iomanip>
14 #include <cstdlib>
15 #include <cstring>
16 #include <istream>
17 #include <iostream>
18 #include <algorithm>
19 #define ci cin
20 #define co cout
21 #define el endl
22 #define Scc(c) scanf("%c",&c)
23 #define Scs(s) scanf("%s",s)
24 #define Sci(x) scanf("%d",&x)
25 #define Sci2(x, y) scanf("%d%d",&x,&y)
26 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
27 #define Scl(x) scanf("%I64d",&x)
28 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
29 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
30 #define Pri(x) printf("%d\n",x)
31 #define Prl(x) printf("%I64d\n",x)
32 #define Prc(c) printf("%c\n",c)
33 #define Prs(s) printf("%s\n",s)
34 #define For(i,x,y) for(int i=x;i<y;i++)
35 #define For_(i,x,y) for(int i=x;i<=y;i++)
36 #define FFor(i,x,y) for(int i=x;i>y;i--)
37 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
38 #define Mem(f, x) memset(f,x,sizeof(f))
39 #define LL long long
40 #define ULL unsigned long long
41 #define MAXSIZE 1000005
42 #define INF 0x3f3f3f3f
43
44 const int mod=1e9+7;
45 const double PI = acos(-1.0);
46
47 using namespace std;
48
49 bool is_prime[MAXSIZE];
50 bool is_prime_small[MAXSIZE];
51 //is_prime[i-a]=true--->i是素数
52 void solve(LL a,LL b)
53 {
54 for(int i=0; (LL)i*i<=b; i++)
55 is_prime_small[i]=true;
56 //is_prime_small[0]=is_prime_small[1]=false;
57 for(int i=0; i<=b-a; i++)
58 is_prime[i]=true;
59 if(a==1)
60 is_prime[0]=0;//就是这个特判,我调了一天才搞出来 。。。。。。
61 for(int i=2; (LL)i*i<=b; i++)
62 if(is_prime_small[i])
63 {
64 for(int j=2*i; (LL)j*j<=b; j+=i)
65 is_prime_small[j]=false;//筛2~根号b
66 for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)
67 is_prime[j-a]=false;//筛a~b
68 }
69 }
70 //j = (ll)(a-1+i)/i*i
71 //(a-1+i)/i*i是对a/i向上取整,此计算的作用是求得第一个>=a的i的倍数。
72 //for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)这个循环的初始条件还是不懂
73
74 int main()
75 {
76 LL a,b;
77 LL c1,c2,d1,d2;
78 while(~Scl2(a,b))
79 {
80 solve(a,b);
81 int tmp=-1;
82 int minn=INF,maxx=-1;
83 queue<int>q1,q2;
84 For_(i,a,b)
85 {
86 if(is_prime[i-a])
87 {
88 if(tmp!=-1)
89 {
90 if(i-tmp<minn)
91 {
92 minn=i-tmp;
93 c1=tmp;
94 c2=i;
95 }
96 if(i-tmp>maxx)
97 {
98 maxx=i-tmp;
99 d1=tmp;
100 d2=i;
101 }
102 }
103 tmp=i;
104 }
105 }
106 if(minn!=INF||maxx!=-1)
107 cout<<c1<<","<<c2<<" are closest, "<<d1<<","<<d2<<" are most distant."<<endl;
108 else
109 Prs("There are no adjacent primes.");
110 }
111 return 0;
112 }

Prime Distance的更多相关文章

  1. 数论 - 素数的运用 --- poj 2689 : Prime Distance

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 D ...

  2. UVA 10140 - Prime Distance(数论)

    10140 - Prime Distance 题目链接 题意:求[l,r]区间内近期和最远的素数对. 思路:素数打表,打到sqrt(Max)就可以,然后利用大的表去筛素数.因为[l, r]最多100W ...

  3. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  4. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  5. 一本通1619【例 1】Prime Distance

    1619: [例 1]Prime Distance 题目描述 原题来自:Waterloo local,题面详见 POJ 2689 给定两个整数 L,R,求闭区间 [L,R] 中相邻两个质数差值最小的数 ...

  6. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  7. POJ-2689 Prime Distance (两重筛素数,区间平移)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13961   Accepted: 3725 D ...

  8. UVA10140 Prime Distance

    UVA10140 Prime Distance 给定两个整数L,R(1<=L<=R<=2^{31},R-L<=10^6)L,R(1<=L<=R<=231,R− ...

  9. ZOJ 1842 Prime Distance(素数筛选法2次使用)

    Prime Distance Time Limit: 2 Seconds      Memory Limit: 65536 KB The branch of mathematics called nu ...

  10. 解题报告:poj2689 Prime Distance

    2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...

随机推荐

  1. 乐维监控与Zabbix对比分析(一)——架构、性能

    近年来,Zabbix凭借其近乎无所不能的监控及优越的性能一路高歌猛进,在开源监控领域独占鳌头:而作为后起的新锐监控平台--乐维监控,则不断吸收Zabbix,Prometheus等优秀开源平台的优点,兼 ...

  2. Mybatis-Plus 对 json 的存储使用支持

    Mybatis-Plus 对 json 的存储使用支持 场景分析: 随着数据库对字段类型支持的多元化,json 类型的存储已成为多场景高频使用的字段类型.而 MySql.postgrpSql 等都支持 ...

  3. 痞子衡嵌入式:我被邀请做贸泽电子&与非网联合推出的《对话工程师》节目嘉宾

    <对话工程师>是「贸泽电子」赞助.「与非网」制作的一档网络节目,自2022年11月起,邀请不同技术领域的资深工程师,聊聊开发过程中的经验感悟,栏目共 10 期,痞子衡有幸被邀请做了第 4 ...

  4. 制作 Python Docker 镜像的最佳实践

    概述 ️Reference: 制作容器镜像的最佳实践 这篇文章是关于制作 Python Docker 容器镜像的最佳实践.(2022 年 12 月更新) 最佳实践的目的一方面是为了减小镜像体积,提升 ...

  5. STM32点亮LED的代码

    led.c #include "led.h" void LED_Config(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2P ...

  6. Anaconda下载安装

    下载地址: 链接:https://pan.baidu.com/s/1fmJkMSL6amJF4KP5JwklOQ 提取码:dsyc 安装完成之后,记得配置系统环境变量:

  7. 学习ASP.NET Core Blazor编程系列十七——文件上传(上)

    学习ASP.NET Core Blazor编程系列文章之目录 学习ASP.NET Core Blazor编程系列一--综述 学习ASP.NET Core Blazor编程系列二--第一个Blazor应 ...

  8. 13、IDEA 提取代码块成独立方法 Extract Method

    两种方式:1.IDEA快捷键: Ctrl + Alt + M 2.选中整块代码 –> 点击右键 –> Refactor –> Extract –>Method

  9. Transition 初步使用

    Transition Vue 提供了 transition 的封装组件,在下列情形中,可以给任何元素和组件添加进入/离开过渡: 条件渲染 (使用 v-if) 条件展示 (使用 v-show) 动态组件 ...

  10. [OpenCV实战]42 数码单反相机的技术细节

    在这篇文章中,我们将说明数码单反相机DSLR(Digital Single Lens Reflex Camera)的各个技术方面.本文将说明焦距(focal length),f-stop,景深(dep ...