题解 [AHOI2009]同类分布
不理解之前为什么不会哈哈哈哈哈哈哈哈。
我是个天才(喜
显然记录 \(f_{i, t, r, s, limit, lead}\),\(i, limit, lead\) 是数位 dp 的套路,\(t\) 代表被除数,就是原数,\(r\) 代表余数,\(s\) 代表除数。
我们会发现 \(s\) 直接转移非常难做,而且它很小,最多才 \(9 \times 18 = 162\),直接枚举。
然后我们会发现 \(t\) 非常大怎么办 \(t\) 不重要就是 \(t\) 的各个数位和重要,数位和顶多 162,我们将 \(t\) 改为各个数位和即可。
然后我们就可以把 \(s\) 这一维删掉。
转移显而易见。
开 longlong+O2 即可
//SIXIANG
#include <iostream>
#include <cstring>
#define MAXN 10000
#define ll long long
#define QWQ cout << "QWQ" << endl;
using namespace std;
ll f[20][200][200][2][2];
int tot = 0, arr[MAXN + 10];
int pika(int i, int t, int r, bool limit, bool lead, int qaq) {
if(!i) {
if(!r && t == qaq) return 1;
else return 0;
}
if(f[i][t][r][limit][lead] != -1) return f[i][t][r][limit][lead];
ll rest = 0;
int lim = ((limit) ? (arr[i]) : 9);
for(int p = 0; p <= lim; p++)
rest = (rest + pika(i - 1, t + p, (10 * r + p) % qaq, limit && (p == arr[i]), lead && (!p), qaq));
f[i][t][r][limit][lead] = rest;
return rest;
}
ll solve(int x) {
memset(arr, 0, sizeof(arr));
tot = 0;
do {
arr[++tot] = x % 10;
x /= 10;
} while(x);
ll sum = 0;
for(int p = 1; p <= 9 * tot; p++) {
memset(f, -1, sizeof(f));
sum += pika(tot, 0, 0, 1, 1, p);
}
return sum;
}
signed main() {
int l, r;
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
题解 [AHOI2009]同类分布的更多相关文章
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- 【[AHOI2009]同类分布】
这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...
- 洛谷 P4127 [AHOI2009]同类分布
题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...
- [AHOI2009]同类分布
题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- 【数位DP】【P4127】[AHOI2009]同类分布
Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) ...
随机推荐
- Flink SQL管理平台flink-streaming-platform-web安装搭建
文章都在个人博客网站:https://www.ikeguang.com/ 同步,欢迎访问. 最近看到有人在用flink sql的页面管理平台,大致看了下,尝试安装使用,比原生的flink sql界面确 ...
- 1.4 Apache Hadoop完全分布式集群搭建-hadoop-最全最完整的保姆级的java大数据学习资料
目录 1.4 Apache Hadoop 完全分布式集群搭建 1.4.1 虚拟机环境准备 1.4.2 集群规划 1.4.3 安装Hadoop 1.4.3.1 集群配置 1.4.3.1.1 HDFS集群 ...
- K8S 核心组件 kubelet 与 kube-proxy 分析
kubelet kubelet 进程用于处理master 下发的任务, 管理pod 中的容器, 注册 自身所在的节点. 节点管理 启动参数说明 --register-node #如果设置为true 则 ...
- Pycharm介绍下载指南
Pycharm的基本介绍 PyCharm是一种Python IDE是可以帮助用户在使用Python语言开发时提高其效率的开发工具. Pycharm的官网:https://www.jetbrains.c ...
- Redis的数据持久化
介绍 Redis 的数据持久化方案 Redis 的数据持久化主要有两大机制,AOF 日志和 RDB 快照. AOF 持久化是通过保存 Redis 服务器所执行的写命令来记录数据库状态. RDB 持久化 ...
- 未授权访问漏洞之Redis漏洞复现
前言 未授权访问漏洞简写是SSRF(Server-Side Request Forgery:服务器端请求伪造),是一种服务器端提供了可以从其他服务器获取资源和数据的功能,但没有对目标地址进行过滤和限制 ...
- [编程基础] Python随机数生成模块总结
Python随机数生成模块教程演示如何在Python中生成伪随机数. 1 介绍 1.1 随机数字生成器 随机数生成器(RNG)生成一组在外观上不显示任何可区分模式的值.随机数生成器分为两类:硬件随机数 ...
- C++初探索
C++初探索 前言 C++ 和 C 的区别主要在8个方面: 输入和输出 引用 inline函数 函数默认值 函数重载 模板函数 new 和 delete namespace 我仅对印象不深的地方做了总 ...
- (18)go-micro微服务ELK介绍
目录 一 什么是ELK 二 Beats的六种工具 三 ELK系统的特点 四 ELK+beats系统架构 五 ELK优点 六 最后 一 什么是ELK ELK是三个[开源软件]的缩写,分别表示:Elast ...
- 安装nginx并配置nginxscript(njs)实现请求头验证或者分流
本文以centos为例 nginx+nginxscript 源码安装nginx 安装必要环境 安装gcc环境 sudo yum -y install gcc gcc-c++ 安装 pcre,让ngin ...