题解 [AHOI2009]同类分布
不理解之前为什么不会哈哈哈哈哈哈哈哈。
我是个天才(喜
显然记录 \(f_{i, t, r, s, limit, lead}\),\(i, limit, lead\) 是数位 dp 的套路,\(t\) 代表被除数,就是原数,\(r\) 代表余数,\(s\) 代表除数。
我们会发现 \(s\) 直接转移非常难做,而且它很小,最多才 \(9 \times 18 = 162\),直接枚举。
然后我们会发现 \(t\) 非常大怎么办 \(t\) 不重要就是 \(t\) 的各个数位和重要,数位和顶多 162,我们将 \(t\) 改为各个数位和即可。
然后我们就可以把 \(s\) 这一维删掉。
转移显而易见。
开 longlong+O2 即可
//SIXIANG
#include <iostream>
#include <cstring>
#define MAXN 10000
#define ll long long
#define QWQ cout << "QWQ" << endl;
using namespace std;
ll f[20][200][200][2][2];
int tot = 0, arr[MAXN + 10];
int pika(int i, int t, int r, bool limit, bool lead, int qaq) {
if(!i) {
if(!r && t == qaq) return 1;
else return 0;
}
if(f[i][t][r][limit][lead] != -1) return f[i][t][r][limit][lead];
ll rest = 0;
int lim = ((limit) ? (arr[i]) : 9);
for(int p = 0; p <= lim; p++)
rest = (rest + pika(i - 1, t + p, (10 * r + p) % qaq, limit && (p == arr[i]), lead && (!p), qaq));
f[i][t][r][limit][lead] = rest;
return rest;
}
ll solve(int x) {
memset(arr, 0, sizeof(arr));
tot = 0;
do {
arr[++tot] = x % 10;
x /= 10;
} while(x);
ll sum = 0;
for(int p = 1; p <= 9 * tot; p++) {
memset(f, -1, sizeof(f));
sum += pika(tot, 0, 0, 1, 1, p);
}
return sum;
}
signed main() {
int l, r;
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
题解 [AHOI2009]同类分布的更多相关文章
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- 【[AHOI2009]同类分布】
这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...
- 洛谷 P4127 [AHOI2009]同类分布
题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...
- [AHOI2009]同类分布
题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- 【数位DP】【P4127】[AHOI2009]同类分布
Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) ...
随机推荐
- Permanently added the RSA host key for IP address '192.30.253.113' to the list of known hosts.
$git push origin master 报错: Warning: Permanently added the RSA host key for IP address '192.30.253.1 ...
- java.util.Date和java.util.Calendar
Date date = new Date();//分配初始化一个Date()对象 Calendar cal = Calendar.getInstance();//获取一个基于当前时间的日历 int d ...
- ArcObjects SDK开发 003 宏观角度看ArcObjects SDK
1.为什么要宏观上看ArcObjects SDK ArcObjects SDK库是一个非常庞大复杂COM组件集合,ArcGIS10.0有1000多个枚举.90多个结构体.5000多个接口以及4000多 ...
- Fastjson漏洞+复现
1.漏洞介绍 FastJson在解析json的过程中,支持使用autoType来实例化某一个具体的类,并调用该类的set/get方法来访问属性.通过查找代码中相关的方法,即可构造出一些恶意利用链. ...
- .NET 云原生架构师训练营(基于 OP Storming 和 Actor 的大型分布式架构一)--学习笔记
目录 为什么我们用 Orleans Dapr VS Orleans Actor 模型 Orleans 的核心概念 为什么我们用 Orleans 分布式系统开发.测试的难度(服务发现.通信) 运维的复杂 ...
- 现代 CSS 高阶技巧,像 Canvas 一样自由绘图构建样式!
在上一篇文章中 -- 现代 CSS 之高阶图片渐隐消失术,我们借助了 CSS @Property 及 CSS Mask 属性,成功的实现了这样一种图片渐变消失的效果: CodePen Demo -- ...
- Jmeter之逻辑控制器---while控制器
while控制器与编程语言中的while语句一样,当条件为真时继续执行,不为真时则跳出while循环体,不再执行. while控制器相对于循环控制器来说多了个条件判断,下面为while控制器使用案例. ...
- Python实验报告(第7章)
实验7:面向对象程序设计 一.实验目的和要求 1.了解面向对象的基本概念(对象.类.构造方法): 2.学会类的定义和使用: 3.掌握属性的创建和修改: 4.掌握继承的基本语法. 二.实验环境 软件版本 ...
- [python]《Python编程快速上手:让繁琐工作自动化》学习笔记4
1. 处理Excel 电子表格笔记(第12章)(代码下载) 本文主要介绍openpyxl 的2.5.12版处理excel电子表格,原书是2.1.4 版,OpenPyXL 团队会经常发布新版本.不过不用 ...
- Android录屏实现
使用方案: mediacodec + mediaprojection + mediamuxer MediaProjectionManager主要作用是获得录屏权限 startActivityForRe ...