图文来自互联网

一、什么是进程和线程 (https://jq.qq.com/?_wv=1027&k=rX9CWKg4)

进程是分配资源的最小单位,线程是系统调度的最小单位。

当应用程序运行时最少会开启一个进程,此时计算机会为这个进程开辟独立的内存空间,不同的进程享有不同的空间,而一个CPU在同一时刻只能够运行一个进程,其他进程处于等待状态。

一个进程内部包括一个或者多个线程,这些线程共享此进程的内存空间与资源。相当于把一个任务又细分成若干个子任务,每个线程对应一个子任务。

二、多进程和多线程 (https://jq.qq.com/?_wv=1027&k=rX9CWKg4)

对于一个CPU来说,在同一时刻只能运行一个进程或者一个线程,而单核CPU往往是在进程或者线程间切换执行,每个进程或者线程得到一定的CPU时间,由于切换的速度很快,在我们看来是多个任务在并行执行(同一时刻多个任务在执行),但实际上是在并发执行(一段时间内多个任务在执行)。

单核CPU的并发往往涉及到进程或者线程的切换,进程的切换比线程的切换消耗更多的时间与资源。在单核CPU下,CPU密集的任务采用多进程或多线程不会提升性能,而在IO密集的任务中可以提升(IO阻塞时CPU空闲)。

而多核CPU就可以做到同时执行多个进程或者多个进程,也就是并行运算。在拥有多个CPU的情况下,往往使用多进程或者多线程的模式执行多个任务。

三、python中的多进程和多线程

1、多进程


def Test(pid):
print("当前进程{}:{}".format(pid, os.getpid()))
for i in range(1000000000):
pass if __name__ == '__main__':
#单进程
start = time.time()
for i in range(2):
Test(i)
end = time.time()
print((end - start))

单进程输出结果如图1:

def Test(pid):
print("当前子进程{}:{}".format(pid, os.getpid()))
for i in range(100000000):
pass if __name__ == '__main__':
#多进程
print("父进程:{}".format(os.getpid()))
start = time.time()
pool = Pool(processes=2)
pid = [i for i in range(2)]
pool.map(Test, pid)
pool.close()
pool.join()
end = time.time()
print((end - start))

多进程输出结果如图2:

从输出结果可以看出都是执行两次for循环,多进程比单进程减少了近乎一半的时间(这里使用了两个进程),并且查看CPU情况可以看出多进程利用了多个CPU。

python中的多进程可以利用mulitiprocess模块的Pool类创建,利用Pool的map方法来运行子进程。一般多进程的执行如下代码:

def Test(pid):
print("当前子进程{}:{}".format(pid, os.getpid()))
for i in range(100000000):
pass
if __name__ == '__main__':
#多进程
print("父进程:{}".format(os.getpid()))
pool = Pool(processes=2)
pid = [i for i in range(4)]
pool.map(Test, pid)
pool.close()
pool.join()

1、利用Pool类创建一个进程池,processes声明在进程池中最多可以运行几个子进程,不声明的情况下会自动根据CPU数量来设定,原则上进程池容量不超过CPU数量。(出于资源的考虑,不要创建过多的进程)

2、声明一个可迭代的变量,该变量的长度决定要执行多少次子进程。

3、利用map()方法执行多进程,map方法两个参数,第一个参数是多进程执行的方法名,第二个参数是第二步声明的可迭代变量,里面的每一个元素是方法所需的参数。 这里需要注意几个点:1)进程池满的时候请求会等待,以上述代码为例,声明了一个容量为2的进程池,但是可迭代变量有4个,那么在执行的时候会先创建两个子进程,此时进程池已满,等待有子进程执行完成,才继续处理请求;

2) 子进程处理完一个请求后,会利用已经创建好的子进程继续处理新的请求而不会重新创建进程。

从图3可以看出上述两个点,如果同时处理4个进程,那么只需要2秒钟,这里是分成两次处理,花费了4秒,并且两次处理使用的子进程号都相同。

3)map会将每个子进程的返回值汇总成一个列表返回。

4、在所有请求处理结束后使用close()方法关闭进程池不再接受请求。

5、使用join()方法让主进程阻塞,等待子进程退出,join()方法要放在close()方法之后,防止主进程在子进程结束之前退出。

2、多线程

python的多线程模块用threading类进行创建

import time
import threading
import os count = 0 def change(n):
global count
count = count + n
count = count - n def run(n):
print("当前子线程:{}".format(threading.current_thread().name))
for i in range(10000000):
change(n) if __name__ == '__main__': print("主线程:{}".format(threading.current_thread().name))
thread_1 = threading.Thread(target=run, args=(3,))
thread_2 = threading.Thread(target=run, args=(10,)) thread_1.start()
thread_2.start()
thread_1.join()
thread_2.join() print(count)

程序执行会创建一个进程,进程会默认启动一个主线程,使用threading.Thread()创建子线程;target为要执行的函数;args传入函数需要的参数;start()启动子线程,join()阻塞主线程先运行子线程。 由于变量由多个线程共享,任何一个线程都可以对于变量进行修改,如果同时多个线程修改变量就会出现错误。

上面的程序在理论上的结果应该为0,但运行结果如图4

出现这个结果的原因就是多个线程同时对于变量修改,在赋值时出现错误,具体解释见多线程

解决这个问题就是在修改变量的时候加锁,这样就可以避免出现多个线程同时修改变量。

import time
import threading
import os count = 0
lock = threading.Lock() def change(n):
global count
count = count + n
count = count - n def run(n):
print("当前子线程:{}".format(threading.current_thread().name))
for i in range(10000000):
# lock.acquire()
# try:
change(n)
# finally:
# lock.release() if __name__ == '__main__': print("主线程:{}".format(threading.current_thread().name))
thread_1 = threading.Thread(target=run, args=(3,))
thread_2 = threading.Thread(target=run, args=(10,)) thread_1.start()
thread_2.start()
thread_1.join()
thread_2.join() print(count)

python中的线程需要先获取GIL(Global Interpreter Lock)锁才能继续运行,每一个进程仅有一个GIL,线程在获取到GIL之后执行100字节码或者遇到IO中断时才会释放GIL,这样在CPU密集的任务中,即使有多个CPU,多线程也是不能够利用多个CPU来提高速率,甚至可能会因为竞争GIL导致速率慢于单线程。所以对于CPU密集任务往往使用多进程,IO密集任务使用多线程。

参考资料

大江狗:一文看懂Python多进程与多线程编程(工作学习面试必读)

多线程

python之多进程and多线程的更多相关文章

  1. Python 中多进程、多线程、协程

    进程: 一个运行的程序(代码)就是一个进程,没有运行的代码叫程序,进程是系统资源分配的最小单位,进程拥有自己独立的内存空间,所以进程间数据不共享.开销大. 线程: 调度执行的最小单位,也叫执行路径,不 ...

  2. Python的多进程和多线程

    进程和线程 进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位: 一个应用程序至少包含一个进程,一个进程至少包含一个线程: 每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之 ...

  3. Python之多进程和多线程

    目标: 1.os.fork简单示例 2.使用os.fork多进程测试IP是否在线 3.使用os.fork多进程解决tcpserver多客户端连接问题 4.多线程测试IP地址是否在线 1.os.fork ...

  4. 【python】多进程、多线程、序列

    一.多进程 1.子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程 ...

  5. 【转】Python中的GIL、多进程和多线程

    转自:http://lesliezhu.github.io/public/2015-04-20-python-multi-process-thread.html 目录 1. GIL(Global In ...

  6. Python中的多进程与多线程(二)

    在上一章中,学习了Python多进程编程的一些基本方法:使用跨平台多进程模块multiprocessing提供的Process.Pool.Queue.Lock.Pipe等类,实现子进程创建.进程池(批 ...

  7. python采用 多进程/多线程/协程 写爬虫以及性能对比,牛逼的分分钟就将一个网站爬下来!

    首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是CPU,承担了所有的计算任务.一个CPU,在一个时间切片里只能运行一个程序. 从操作系统的角度: 进程和线程,都 ...

  8. 在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析

    首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环. 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时 ...

  9. 学习笔记--python中使用多进程、多线程加速文本预处理

    一.任务描述 最近尝试自行构建skip-gram模型训练word2vec词向量表.其中有一步需要统计各词汇的出现频率,截取出现频率最高的10000个词汇进行保留,形成常用词词典.对于这个问题,我建立了 ...

随机推荐

  1. Codeforces Round #710 (Div. 3) Editorial 1506A - Strange Table

    题目链接 https://codeforces.com/contest/1506/problem/A 原题 1506A - Strange Table Example input 5 1 1 1 2 ...

  2. 算法基础⑦搜索与图论--BFS(宽度优先搜索)

    宽度优先搜索(BFS) #include<cstdio> #include<cstring> #include<iostream> #include<algo ...

  3. git版本时提示openssl ssl_read

    1.右击git bash here 2.执行 git config --global http.sslVerify "false"

  4. python基础练习题(题目 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。到第10天早上想再吃时,见只剩下一个桃子了。求第一天共摘了多少)

    day13 --------------------------------------------------------------- 实例021:猴子偷桃 题目 猴子吃桃问题:猴子第一天摘下若干 ...

  5. [AcWing 796] 子矩阵的和

    点击查看代码 #include<iostream> using namespace std; const int N = 1e3 + 10; int a[N][N], s[N][N]; i ...

  6. nginx + nginx-rtmp-module搭建直播流服务器实现推流实时直播功能

    业务需求 最近公司在做养老相关的业务,现在需要子女从小程序端对家里的老人通过家庭终端交互屏进行实时看护. 解决方案 第三方的一些现成的服务:腾讯音视频通话.直播功能; 阿里的音视频通信;两者都挺好的, ...

  7. CentOS 8迁移Rocky Linux 8手记

    前言 由于CentOS 8的支持已经到期了,.NET 6也不支持了,然后也无法升级,导致使用起来已经非常不便,无奈只有迁移服务器这个选项了. 选择发行版本一直是一个比较头疼的问题,首先我不是专门运维的 ...

  8. Hive 3.x 配置&详解

    Hive 1. 数据仓库概述 1.1 基本概念 数据仓库(英语:Data Warehouse,简称数仓.DW),是一个用于存储.分析.报告的数据系统. 数据仓库的目的是构建面向分析的集成化数据环境,分 ...

  9. p2p-tunnel 打洞内网穿透系列(一)客户端配置及打洞

    系列文章 p2p-tunnel 打洞内网穿透系列(一)客户端配置及打洞 p2p-tunnel 打洞内网穿透系列(二)TCP转发访问远程共享文件夹 p2p-tunnel 打洞内网穿透系列(三)TCP转发 ...

  10. 第一个Python程序 | 机选彩票号码+爬取最新开奖号码

    (机选彩票号码+爬取最新开奖号码 | 2021-04-21) 学习记录,好记不如烂笔头 这个程序作用是<机选三种彩票类型的号码> 程序内包含功能有如下: 自动获取最新的三种彩票的开奖号码 ...