1. 保证消息被消费

即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险。

我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O,一般我们会将消息写入到操作系统的 Page Cache 中,然后在合适的时间将消息刷新到磁盘上。

例如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所谓的异步刷盘。

不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会丢失了。那么怎么解决呢?你可能会把刷盘的间隔设置很短,或者设置累积一条消息就就刷盘。

但这样频繁刷盘会对性能有比较大的影响,而且从经验来看,出现机器宕机或者掉电的几率也不高,所以我不建议你这样做。

如果你的电商系统对消息丢失的容忍度很低,那么你可以考虑以集群方式部署 Kafka 服务,通过部署多个副本备份数据,保证消息尽量不丢失。

那么它是怎么实现的呢?Kafka 集群中有一个 Leader 负责消息的写入和消费,可以有多个 Follower 负责数据的备份。Follower 中有一个特殊的集合叫做 ISR(in-sync replicas),当 Leader 故障时,新选举出来的 Leader 会从 ISR 中选择,默认 Leader 的数据会异步地复制给 Follower,这样在 Leader 发生掉电或者宕机时,Kafka 会从 Follower 中消费消息,减少消息丢失的可能。

由于默认消息是异步地从 Leader 复制到 Follower 的,所以一旦 Leader 宕机,那些还没有来得及复制到 Follower 的消息还是会丢失。

为了解决这个问题,Kafka 为生产者提供一个选项叫做“acks”,当这个选项被设置为“all”时,生产者发送的每一条消息除了发给 Leader 外还会发给所有的 ISR,并且必须得到 Leader 和所有 ISR 的确认后才被认为发送成功。这样,只有 Leader 和所有的 ISR 都挂了,消息才会丢失。

从上面这张图来看,当设置“acks=all”时,需要同步执行 1,3,4 三个步骤,对于消息生产的性能来说也是有比较大的影响的,所以你在实际应用中需要仔细地权衡考量。这里建议是:

  1. 如果你需要确保消息一条都不能丢失,那么建议不要开启消息队列的同步刷盘,而是需要使用集群的方式来解决,可以配置当所有 ISR Follower 都接收到消息才返回成功。

  2. 如果对消息的丢失有一定的容忍度,那么建议不部署集群,即使以集群方式部署,也建议配置只发送给一个 Follower 就可以返回成功了。

  3. 我们的业务系统一般对于消息的丢失有一定的容忍度,比如说以上面的红包系统为例,如果红包消息丢失了,我们只要后续给没有发送红包的用户补发红包就好了。

2.保证被消费一次

如何保证消息只被消费一次

从上面的分析中,你能发现,为了避免消息丢失,我们需要付出两方面的代价:一方面是性能的损耗;一方面可能造成消息重复消费。

性能的损耗我们还可以接受,因为一般业务系统只有在写请求时才会有发送消息队列的操作,而一般系统的写请求的量级并不高,但是消息一旦被重复消费,就会造成业务逻辑处理的错误。那么我们要如何避免消息的重复呢?

想要完全的避免消息重复的发生是很难做到的,因为网络的抖动、机器的宕机和处理的异常都是比较难以避免的,在工业上并没有成熟的方法,因此我们会把要求放宽,只要保证即使消费到了重复的消息,从消费的最终结果来看和只消费一次是等同的就好了,也就是保证在消息的生产和消费的过程是“幂等”的。

1. 什么是幂等

幂等是一个数学上的概念,它的含义是多次执行同一个操作和执行一次操作,最终得到的结果是相同的,说起来可能有些抽象,我给你举个例子:

比如,男生和女生吵架,女生抓住一个点不放,传递“你不在乎我了吗?”(生产消息)的信息。那么当多次埋怨“你不在乎我了吗?”的时候(多次生产相同消息),她不知道的是,男生的耳朵(消息处理)会自动把 N 多次的信息屏蔽,就像只听到一次一样,这就是幂等性。

如果我们消费一条消息的时候,要给现有的库存数量减 1,那么如果消费两条相同的消息就会给库存数量减 2,这就不是幂等的。而如果消费一条消息后,处理逻辑是将库存的数量设置为 0,或者是如果当前库存数量是 10 时则减 1,这样在消费多条消息时,所得到的结果就是相同的,这就是幂等的。

说白了,你可以这么理解“幂等”:一件事儿无论做多少次都和做一次产生的结果是一样的,那么这件事儿就具有幂等性。

2. 在生产、消费过程中增加消息幂等性的保证

消息在生产和消费的过程中都可能会产生重复,所以你要做的是,在生产过程和消费过程中增加消息幂等性的保证,这样就可以认为从“最终结果上来看”,消息实际上是只被消费了一次的。

在消息生产过程中,在 Kafka0.11 版本和 Pulsar 中都支持“producer idempotency”的特性,翻译过来就是生产过程的幂等性,这种特性保证消息虽然可能在生产端产生重复,但是最终在消息队列存储时只会存储一份。

它的做法是给每一个生产者一个唯一的 ID,并且为生产的每一条消息赋予一个唯一 ID,消息队列的服务端会存储 < 生产者 ID,最后一条消息 ID> 的映射。当某一个生产者产生新的消息时,消息队列服务端会比对消息 ID 是否与存储的最后一条 ID 一致,如果一致,就认为是重复的消息,服务端会自动丢弃。

而在消费端,幂等性的保证会稍微复杂一些,你可以从通用层和业务层两个层面来考虑。

你可以看到,无论是生产端的幂等性保证方式,还是消费端通用的幂等性保证方式,它们的共同特点都是为每一个消息生成一个唯一的 ID,然后在使用这个消息的时候,先比对这个 ID 是否已经存在,如果存在,则认为消息已经被使用过。

所以这种方式是一种标准的实现幂等的方式,你在项目之中可以拿来直接使用,它在逻辑上的伪代码就像下面这样:

  1.  
    boolean isIDExisted = selectByID(ID); // 判断ID是否存在
  2.  
    if(isIDExisted) {
  3.  
    return; //存在则直接返回
  4.  
    } else {
  5.  
    process(message); //不存在,则处理消息
  6.  
    saveID(ID); //存储ID
  7.  
    }

不过这样会有一个问题:如果消息在处理之后,还没有来得及写入数据库,消费者宕机了重启之后发现数据库中并没有这条消息,还是会重复执行两次消费逻辑。

这时你就需要引入事务机制,保证消息处理和写入数据库必须同时成功或者同时失败,但是这样消息处理的成本就更高了,所以,如果对于消息重复没有特别严格的要求,可以直接使用这种通用的方案,而不考虑引入事务。

在业务层面怎么处理呢?这里有很多种处理方式,其中有一种是增加乐观锁的方式。比如,你的消息处理程序需要给一个人的账号加钱,那么你可以通过乐观锁的方式来解决。

具体的操作方式是这样的:你给每个人的账号数据中增加一个版本号的字段,在生产消息时先查询这个账户的版本号,并且将版本号连同消息一起发送给消息队列。消费端在拿到消息和版本号后,在执行更新账户金额 SQL 的时候带上版本号,类似于执行:

  1.  
    update user set amount = amount + 20, version=version+1
  2.  
    where userId=1 and version=1;

你看,我们在更新数据时给数据加了乐观锁,这样在消费第一条消息时,version 值为 1,SQL 可以执行成功,并且同时把 version 值改为了 2;在执行第二条相同的消息时,由于 version 值不再是 1,所以这条 SQL 不能执行成功,也就保证了消息的幂等性。

kafka 保证消息被消费和消息只消费一次的更多相关文章

  1. kafka同步异步消费和消息的偏移量(四)

    1. 消费者位置(consumer position) 因为kafka服务端不保存消息的状态,所以消费端需要自己去做很多事情.我们每次调用poll()方法他总是返回已经保存在生产者队列中还未被消费者消 ...

  2. Kafka中的消息是否会丢失和重复消费(转)

    在之前的基础上,基本搞清楚了Kafka的机制及如何运用.这里思考一下:Kafka中的消息会不会丢失或重复消费呢?为什么呢? 要确定Kafka的消息是否丢失或重复,从两个方面分析入手:消息发送和消息消费 ...

  3. springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)

    前言: RabbitMQ相关知识请参考: https://www.jianshu.com/p/cc3d2017e7b3 Linux安装RabbitMQ请参考: https://www.jianshu. ...

  4. Spring Kafka和Spring Boot整合实现消息发送与消费简单案例

    本文主要分享下Spring Boot和Spring Kafka如何配置整合,实现发送和接收来自Spring Kafka的消息. 先前我已经分享了Kafka的基本介绍与集群环境搭建方法.关于Kafka的 ...

  5. (转载)springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)

    转载自https://www.jianshu.com/p/dca01aad6bc8 一.先扔一张图   image.png 说明: 本文涵盖了关于RabbitMQ很多方面的知识点, 如: 消息发送确认 ...

  6. 消息队列之事务消息,RocketMQ 和 Kafka 是如何做的?

    每个时代,都不会亏待会学习的人. 大家好,我是 yes. 今天我们来谈一谈消息队列的事务消息,一说起事务相信大家都不陌生,脑海里蹦出来的就是 ACID. 通常我们理解的事务就是为了一些更新操作要么都成 ...

  7. kafka学习笔记(一)消息队列和kafka入门

    概述 学习和使用kafka不知不觉已经将近5年了,觉得应该总结整理一下之前的知识更好,所以决定写一系列kafka学习笔记,在总结的基础上希望自己的知识更上一层楼.写的不对的地方请大家不吝指正,感激万分 ...

  8. Kafka,Mq,Redis作为消息队列使用时的差异?

    redis 消息推送(基于分布式 pub/sub)多用于实时性较高的消息推送,并不保证可靠.其他的mq和kafka保证可靠但有一些延迟(非实时系统没有保证延迟).redis-pub/sub断电就清空, ...

  9. MQ消息机制如何确认消费了消息?

    消息队列如何保证消息能百分百成功被消费 目前常用的消息队列有很多种,如RabbitMQ,ActiveMQ,Kafka...下面以RabbitMQ为例来讲如何保证消息队列中的信息能百分百被消费掉. 其中 ...

随机推荐

  1. Spring MVC项目快速搭建(编程模型)

    1)配置DispatcherServlet前端控制器(web配置) 2)将xml文件路径告诉Spring MVC(DispatcherServlet) 以上两步等价于继承了WebApplication ...

  2. linux历史命令审计

    一.添加历史命令记录 1.首先在/etc/profile中添加 export HISTORY_FILE=/var/log/Command/Command.log export PROMPT_COMMA ...

  3. Spring声明式事务的两种配置方式(注解/xml)

    application配置tx:annotation-driven 配置声明式事务tx:TransactionManager 声明式事务需要数据源所以需要配置DataSource 使用:在类或者方法上 ...

  4. 学习java知道这五个网站就够了

    "这个国家的每个人都应该学习编程计算机,因为它教你如何思考." 当乔布斯几年前这么说时,他再次被证明是一个真正的有远见的人. 好吧,这很难反驳!如今,编程比以往任何时候都更加蓬勃发 ...

  5. 蓝桥杯2022年java试题

    一:基础练习: (本文只附代码,解析后续修改后添上) 1.a+b问题: 代码如下: 1 import java.util.*; 2 public class Main { 3 public stati ...

  6. k8s容器拷贝文件到本地、本地文件拷贝到k8s容器

    k8s容器拷贝文件到本地 kubectl cp qzcsbj/order-b477c8947-tr8rz:/tmp/jstack.txt /root/test/jstack.txt 本地文件拷贝到k8 ...

  7. PentestBox在win10里打不开工具 显示无系统命令的解决方法

    PentestBox详细安装过程:http://www.cnblogs.com/ESHLkangi/p/8336398.html 在使用PentestBox的时候出现了打不开工具的问题,最后看到一个大 ...

  8. Msftables之Linux NFS共享目录配置漏洞

    实验目的 1.了解Metasploitables靶机系统漏洞: 2.学习使用Metasploit. 实验原理 msftables之利用Linux NFS共享目录配置漏洞渗透. 实验内容 msftabl ...

  9. csaw密码

    题目:AAoHAR1TIiIkUFUjUFQgVyInVSVQJVFRUSNRX1YgXiJSVyJQVRs=写python脚本: import base64 ciphertext="AAo ...

  10. [题解]Codeforces Round #519 - B. Lost Array

    [题目] B. Lost Array [描述] Bajtek有一个数组x[0],x[1],...,x[k-1]但被搞丢了,但他知道另一个n+1长的数组a,有a[0]=0,对i=1,2,...,n.由此 ...