uoj450 【集训队作业2018】复读机(生成函数,单位根反演)

uoj

题解时间

首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] \frac{ x^{ i } }{ i! } $ 。

容易想到直接上单位根反演:

\[\begin{aligned}
\sum\limits_{ i = 0 }^{ k } [ d | i ] \frac{ x^{ i } }{ i! }
& = \sum\limits_{ i = 0 }^{ k } \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } \omega_{ d }^{ ij } \frac{ x^{ i } }{ i! } \\
& = \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } \sum\limits_{ i = 0 }^{ k } \frac{ ( \omega_{ d }^{ j } x )^{ i } }{ i! } \\
& = \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } e^{ ( \omega_{ d }^{ j } x )^{ i } }
\end{aligned}
\]

然后答案就是 $ [ x^{ n } ] ( \frac{ 1 }{ d^{ k } } ( \sum\limits_{ j = 0 }^{ d - 1 } e^{ \omega_{ d }^{ j } x } )^{ k } ) $ 。

由于 $ d \le 3 $ ,所以直接大力二项式定理,时间复杂度 $ O( d k^{d-1} \log{ k } ) $ 。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=500011;
const int mo=19491001;
const int g=7,om=18827933;
void doadd(int &a,int b){if((a+=b)>=mo) a-=mo;}int add(int a,int b){return (a+=b)>=mo?a-mo:a;}
void dodec(int &a,int b){doadd(a,mo-b);}int dec(int a,int b){return add(a,mo-b);}
void domul(int &a,int b){a=1ll*a*b%mo;}int mul(int a,int b){return 1ll*a*b%mo;}
int fpow(int a,int p){int ret=1;while(p){if(p&1) domul(ret,a);domul(a,a),p>>=1;}return ret;}
int inv[N],fac[N],ifac[N];
void init()
{
inv[1]=1;for(int i=2;i<=500000;i++) inv[i]=mul(inv[mo%i],mo-mo/i);
for(int i=fac[0]=1;i<=500000;i++) fac[i]=mul(fac[i-1],i);
for(int i=ifac[0]=1;i<=500000;i++) ifac[i]=mul(ifac[i-1],inv[i]);
}
int C(int n,int m){if(n<m||n<0||m<0) return 0;return mul(fac[n],mul(ifac[n-m],ifac[m]));}
int n,m,d,ans;
int main()
{
init();
read(n,m,d);
switch(d)
{
case 1:
ans=fpow(m,n);
break;
case 2:
for(int i=0;i<=m;i++) doadd(ans,mul(C(m,i),fpow(dec(i*2,m),n)));
break;
case 3:
for(int i=0;i<=m;i++)for(int j=0;i+j<=m;j++)
doadd(ans,mul(mul(C(m,i),C(m-i,j)),fpow(add(m-i-j,add(mul(om,i),mul(mul(om,om),j))),n)));
break;
}
domul(ans,fpow(inv[d],m));
printf("%d\n",ans);
return 0;
}
}
int main(){return RKK::main();}

uoj450 【集训队作业2018】复读机(生成函数,单位根反演)的更多相关文章

  1. uoj #450[集训队作业2018]复读机

    传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...

  2. 【UOJ#450】[集训队作业2018] 复读机

    题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...

  3. uoj#450. 【集训队作业2018】复读机(单位根反演)

    题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...

  4. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  5. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  6. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  7. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  8. UOJ#418. 【集训队作业2018】三角形

    #418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...

  9. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

随机推荐

  1. Solution -「NOI.AC 省选膜你赛」array

    题目 题意简述   维护一个长度为 \(n\) 的序列 \(\{a_n\}\),并给出 \(q\) 个操作: 将下标为 \(x\) 的数修改为 \(y\). 给定 \(l,r,k\),求最大的 \(m ...

  2. Solution -「NOI.AC 省选膜你赛」union

    题目 题意简述   给定两颗树 \(A,B\),\(A\) 中的任一结点 \(u\) 与 \(B\) 中的任一结点 \(v\) 都有一个关系值 \(f(u,v)\),初始为 \(0\).再给出 \(q ...

  3. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

  4. 多图|一文详解Nacos参数!

    Nacos 中的参数有很多,如:命名空间.分组名.服务名.保护阈值.服务路由类型.临时实例等,那这些参数都是什么意思?又该如何设置?接下来我们一起来盘它. 1.命名空间 在 Nacos 中通过命名空间 ...

  5. python-logging日志模块,以及封装实现

    前言 是Python内置的标准模块,主要用于输出运行日志 基本语法 import logging # # logging模块默认设置的日志级别是warning,而debug和info的级别是低于war ...

  6. (tamcat控制台乱码)在idea中运行toncat后控制台出现乱码的情况解决办法(教程附图)。

    详细教程: (tamcat控制台乱码)在idea中运行toncat后控制台出现乱码的情况解决办法(教程附图)._IT打工酱的博客-CSDN博客

  7. 通过xmanager连接linux远程主机桌面

    转至:https://blog.csdn.net/kadwf123/article/details/79564293 1.效果图: 远程linux桌面版主机,此处是虚拟机: 使用xmanager xb ...

  8. Qt:Qt资源系统

    学习自 Qt 资源系统(Qt Resource System) - 知乎 1.什么是Qt 资源系统 Qt资源系统是一种将图片.数据存储于二进制文件中的一套系统.这些图片.数据会被我们的程序使用,它们称 ...

  9. 利用POST请求模拟登录豆瓣

    需要用requests库 豆瓣上次更新后,就不能通过直接的requests.post()方式直接传递参数登录了.必须新建session,先GET请求,然后POST才能成功.原因未知 data参数中的四 ...

  10. ROS入门介绍

    1.ROS版本介绍 ROS版本:(已经推出数十个版本) 2013 ------> Hydro 2014 ------> Indigo (对应Ubuntu14.04) (现在已经基本废弃) ...