优化转移DP

Problem - H - Codeforces

题意

Aloha 要骑单车,可以单独花费 \(r\) 元骑 1 次,也可以购买某一种单车卡,第 \(i\) 种单车卡 \(c_i\) 元,若在第 \(t\) 天购买,可以在 \([t,t+d_i-1]\) 天使用,并且最多使用 \(k_i\) 次

给出 Aloha 一段时间内的单车使用情况,求出他需要的最小花费

给出

  1. \(n\;(1<=n<=500)\), 单车卡的种类

  2. \(m\;(1<=m<=10^5)\), \(m\) 条使用记录

  3. \(r\;(1<=r<=10^9)\), 单独骑 1 次的花费

  4. \(n\) 行,每行有 \(1<=d_i,k_i,c_i<=10^9\), 第 \(i\) 种单车卡的有效期、使用次数、价格

  5. \(m\) 行,每行有 \(0<=p_i<=10^9,\;0<=q_i<=3e5,\;\sum\limits_{i=1}^mq_i<=3e5\)

    表示在第 \(p_i\) 天骑了 \(q_i\) 次

思路

  1. 看上去就是 DP,观察数据范围,很多数据的值域过大,只有 \(n\) 和 \(\sum q_i\) 可能与 DP 复杂度有关

  2. 求出每次骑的时间 \(a[i]\), 一共骑了 cnt 次,并按时间排序;

    设 \(f[i]\) 为骑完前 \(i\) 次的最小花费,\(ptr[i][j]\) 为如果第 \(i\) 次可以用到第 \(j\) 个卡,则最早在第 \(ptr[i][j]\) 次骑完后买卡

    可列出朴素DP转移

    for (int i = 1; i <= cnt; i++)
    {
    f[i] = f[i - 1] + r;//初始化为不买卡直接骑
    for (int j = 1; j <= n; j++)
    {
    auto [d, k, c] = b[j];
    for (int w = ptr[i][j]; w < i; w++)
    f[i] = min(f[i], f[w] + c);
    }
    }
  3. 由于 \(f[i]\) 是单调不减的,因此 \(f[i]=min(f[i],f[w]+c)\) 中 \(w=ptr[i][j]\) 时是最优的(也可以感性地感受一下,这样卡的利用率更高,这样好像倒推更好理解一点,有时间试试)

  4. 接下来就是需要求出 \(ptr[i][j]\),第一维可以优化掉,\(ptr[j]\) 表示第 i 次骑车时,最早需要 \(ptr[j]\)次买第 j 种卡才能覆盖第 i 次

    随着 \(i\) 增大,\(ptr[j]\) 不会回退,因此可以暴力 check,双指针维护

代码

#include <bits/stdc++.h>
using namespace std;
#define endl "\n" typedef long long ll;
typedef pair<int, int> PII; const int N = 3e5 + 10;
int n, m;
ll r;
struct Cards
{
ll d, k, c;
}b[510];
int a[N];//第i次的时间
int cnt;
ll f[N];//前i次的最小代价
int ptr[510]; bool check(int now, int card)
{
int last = ptr[card];
auto [d, k, c] = b[card];
if (last == now)
return true;
if (a[last] + d - 1 < a[now])
return false;
if (now - last + 1 > k)
return false;
return true;
} int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m >> r;
for (int i = 1; i <= n; i++)
cin >> b[i].d >> b[i].k >> b[i].c;
for (int i = 1; i <= m; i++)
{
int p, q;
cin >> p >> q;
while(q--)
a[++cnt] = p;
}
sort(a + 1, a + cnt + 1);
for (int i = 1; i <= n; i++)
ptr[i] = 1;
for (int i = 1; i <= cnt; i++)
{
f[i] = f[i-1] + r;
for (int j = 1; j <= n; j++)
{
auto [d, k, c] = b[j];
// for (int w = ptr; w < i; w++)
// f[i] = min(f[i], f[w] + c);
// 因为f[i]单调递增,因此取w=x最小,ptr为在第ptr次后买优惠券,正好可以覆盖到第i次,双指针更新ptr
while(!check(i, j))
ptr[j]++;
f[i] = min(f[i], f[ptr[j] - 1] + c);
// cout << i << ": " << j << " " << ptr[j] << endl;
}
}
cout << f[cnt] << endl;
return 0;
}

2020icpc沈阳H的更多相关文章

  1. 2020ICPC沈阳站C题 Mean Streets of Gadgetzan

    大致题意 原题链接 翻译 \(有n个逻辑变量 请你分别对它们赋值 使其满足m个命题\) \(命题有四种格式:\) 单独数字x 表示第x个逻辑变量为真 ! + 数字x 表示第x个逻辑变量为假 若干个数字 ...

  2. 每日一刷(2018多校水题+2016icpc水题)

    11.9 线段树 http://acm.hdu.edu.cn/showproblem.php?pid=6315 求逆序对个数 http://acm.hdu.edu.cn/showproblem.php ...

  3. 2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem

    2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem 题意: 给定一个长度为\(n\)的序列,有两种操作: 1:单点修改. 2:查询区间\([L,R]\)范围内所有子 ...

  4. 2016ACM/ICPC亚洲区沈阳站 - A/B/C/E/G/H/I - (Undone)

    链接:传送门 A - Thickest Burger - [签到水题] ACM ICPC is launching a thick burger. The thickness (or the heig ...

  5. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  6. 2019沈阳icpc网络赛H德州扑克

    题面:https://nanti.jisuanke.com/t/41408 题意:A,2,3,4,5,6,7,8,9,10,J,Q,K,13张牌,无花色之分,val为1~13. 给n个人名+n个牌,输 ...

  7. 2016ACM/ICPC亚洲区沈阳站-重现赛赛题

    今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...

  8. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  9. HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)

    Counting Cliques Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  10. HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)

    Thickest Burger Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

随机推荐

  1. [编程基础] C和C++内置宏说明

    文章目录 1 内置的宏定义 2 运行平台宏 3 编译器宏 4 调试类型宏 5 代码 C和C++内置宏在代码调试.跨系统平台代码中会经常使用,本文记录说明一下.内置宏不需要调用头文件,可直接使用.在使用 ...

  2. 《深度探索C++对象模型》第四章 Function语意学

    member function相对于nonmember function之间不存在效率之间的差别,因为编译器内部已经将"member 函数实体"转化为对等的"nonmem ...

  3. [数据结构]克鲁斯卡尔(Kruskal)算法

    算法的概念 与Prim算法从顶点开始扩展最小生成树不同,Kruskal算法是一种按权值的递增次序选择合适的边来构造最小生成树的方法.假设N=(V,E)是连通网,对应的最小生成树T=(Vt,Et),Kr ...

  4. 安装pytorch-gpu的经验与教训

    首先说明 本文并不是安装教程,网上有很多,这里只是自己遇到的一些问题 我是以前安装的tensorflow-gpu的,但是发现现在的学术论文大部分都是用pytorch复现的,因此才去安装的pytorch ...

  5. Angular8中共享模块,共享组件的写法(anular其他模块组件引用方法)

    Angular8中共享模块,共享组件的写法(anular其他模块组件引用方法) 第一步:全局创建一个共享的module 这里示例创建一个模块common-share 创建完成后,会生成两个文件 文件1 ...

  6. 通过this引用成员方法-类的构造器

    通过this引用成员方法 this代表当前对象,如果需要引用的方法就是当前类中的成员方法,那么可以使用"this成员方法"的格式来使用方法引用.首先是简单的函数式接口︰ 下面是一个 ...

  7. 分布式事务 | 使用DTM 的Saga 模式

    DTM 简介 前面章节提及的MassTransit.dotnetcore/CAP都提供了分布式事务的处理能力,但也仅局限于Saga和本地消息表模式的实现.那有没有一个独立的分布式事务解决方案,涵盖多种 ...

  8. Task记录1.CancellationToken 取消Task任务的操作

    //1.创建取消令牌数据 CancellationTokenSource tokenSource = new CancellationTokenSource(); //2.创建取消令牌 Cancell ...

  9. springboot返回数据null参数设为空字符串或空数组

    package com.ruoyi.framework.config.ResponseVoConfig.WebConfig; /** * @Classname MyJsonMapper * @Desc ...

  10. Hadoop 及Spark 分布式HA运行环境搭建

    作者:京东物流 秦彪 工欲善其事必先利其器,在深入学习大数据相关技术之前,先手动从0到1搭建一个属于自己的本地Hadoop和Spark运行环境,对于继续研究大数据生态圈各类技术具有重要意义.本文旨在站 ...