MKL库矩阵乘法
此示例是利用Intel 的MKL库函数计算矩阵的乘法,目标为:\(C=\alpha*A*B+\beta*C\),由函数cblas_dgemm实现;
其中\(A\)为\(m\times k\)维矩阵,\(B\)为\(k\times n\)维矩阵,\(C\)为\(m\times n\)维矩阵。
1 cblas_dgemm参数详解
fun cblas_dgemm(Layout, //指定行优先(CblasRowMajor,C)或列优先(CblasColMajor,Fortran)数据排序
TransA, //指定是否转置矩阵A
TransB, //指定是否转置矩阵B
M, //矩阵A和C的行数
N, //矩阵B和C的列数
K, //矩阵A的列,B的行
alpha, //矩阵A和B乘积的比例因子
A, //A矩阵
lda, //矩阵A的第一维的大小
B, //B矩阵
ldb, //矩阵B的第一维的大小
beta, //矩阵C的比例因子
C, //(input/output) 矩阵C
ldc //矩阵C的第一维的大小
)
cblas_dgemm矩阵乘法默认的算法就是\(C=\alpha*A*B+\beta*C\),若只需矩阵\(A\)与\(B\)的乘积,设置\(\alpha=1,\beta=0\)即可。
2 定义待处理矩阵
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h" // 调用mkl头文件
#define min(x,y) (((x) < (y)) ? (x) : (y))
double* A, * B, * C; //声明三个矩阵变量,并分配内存
int m, n, k, i, j; //声明矩阵的维度,其中
double alpha, beta;
m = 2000, k = 200, n = 1000;
alpha = 1.0; beta = 0.0;
A = (double*)mkl_malloc(m * k * sizeof(double), 64); //按照矩阵维度分配内存
B = (double*)mkl_malloc(k * n * sizeof(double), 64); //mkl_malloc用法与malloc相似,64表示64位
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) { //判空
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
for (i = 0; i < (m * k); i++) { //赋值
A[i] = (double)(i + 1);
}
for (i = 0; i < (k * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
其中\(A\)和\(B\)矩阵设置为:
A = \left[ {\begin{array}{*{20}{c}}
{1.0}&{2.0}& \cdots &{1000.0}\\
{1001.0}&{1002.0}& \cdots &{2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{999001.0}&{999002.0}& \cdots &{1000000.0}
\end{array}} \right] \space
B = \left[ {\begin{array}{*{20}{c}}
{-1.0}&{-2.0}& \cdots &{-1000.0}\\
{-1001.0}&{-1002.0}& \cdots &{-2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{-999001.0}&{-999002.0}& \cdots &{-1000000.0}
\end{array}} \right]
\end{array}
\]
\(C\)矩阵为全0。
3 执行矩阵乘法
回到例子中,对照上面的参数,将C矩阵用A与B的矩阵乘法表示:
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, A, k, B, n, beta, C, n);
//在执行完成后,释放内存
mkl_free(A);
mkl_free(B);
mkl_free(C);
执行后的得到结果如下:
完整代码
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
#define min(x,y) (((x) < (y)) ? (x) : (y))
int main()
{
double* A, * B, * C;
int m, n, k, i, j;
double alpha, beta;
m = 2000, k = 200, n = 1000;
alpha = 1.0; beta = 0.0;
A = (double*)mkl_malloc(m * k * sizeof(double), 64);
B = (double*)mkl_malloc(k * n * sizeof(double), 64);
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) {
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
for (i = 0; i < (m * k); i++) {
A[i] = (double)(i + 1);
}
for (i = 0; i < (k * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, A, k, B, n, beta, C, n);
for (i = 0; i < min(m, 6); i++) {
for (j = 0; j < min(k, 6); j++) {
printf("%12.0f", A[j + i * k]);
}
printf("\n");
}
for (i = 0; i < min(k, 6); i++) {
for (j = 0; j < min(n, 6); j++) {
printf("%12.0f", B[j + i * n]);
}
printf("\n");
}
for (i = 0; i < min(m, 6); i++) {
for (j = 0; j < min(n, 6); j++) {
printf("%12.5G", C[j + i * n]);
}
printf("\n");
}
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 0;
}
MKL库矩阵乘法的更多相关文章
- Eigen ,MKL和 matlab 矩阵乘法速度比较
Eigen 矩阵乘法的速度 < MKL矩阵乘法的速度,MKL矩阵乘法的速度与matlab矩阵乘法的速度相差不大,但matlab GPU版本的矩阵乘法速度是CUP的两倍,在采用float数据类型 ...
- [转]OpenBLAS项目与矩阵乘法优化
课程内容 OpenBLAS项目介绍 矩阵乘法优化算法 一步步调优实现 以下为公开课完整视频,共64分钟: 以下为公开课内容的文字及 PPT 整理. 雷锋网的朋友们大家好,我是张先轶,今天主要介绍一下我 ...
- 有关CUBLAS中的矩阵乘法函数
关于cuBLAS库中矩阵乘法相关的函数及其输入输出进行详细讨论. ▶ 涨姿势: ● cuBLAS中能用于运算矩阵乘法的函数有4个,分别是 cublasSgemm(单精度实数).cublasDgemm( ...
- CPU的自动调度矩阵乘法
CPU的自动调度矩阵乘法 这是一个有关如何对CPU使用自动调度程序的文档. 与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板.用户只需要编写计算声明,而无需任何调度 ...
- MKL库奇异值分解(LAPACKE_dgesvd)
对任意一个\(m\times n\)的实矩阵,总可以按照SVD算法对其进行分解.即: \[A = U\Sigma V^T \] 其中\(U.V\)分别为\(m\times m.n\times n\)的 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
随机推荐
- display 不同的值及他们的作用
display 不同的值及他们的作用 常见 block 块元素类型,默认宽度为父元素宽度,可设置宽高,并独占一行 none 元素不显示,并从文档流中移除 inline 行内元素类型,默认宽度为内容宽度 ...
- 【Mybatis】SQL语句的解析执行过程原理
sqlSession简单介绍 拿到SqlSessionFactory对象后,会调用SqlSessionFactory的openSesison方法,这个方法会创建一个Sql执行器(Executor),这 ...
- Replicated State Machine和WAL
在阅读raft论文的时候,考虑两个问题: 为什么要用Replicated State Machine?没有其他方式吗 为什么要先写日志再应用到Replicated State Machine,直接应用 ...
- 转:为什么数据库选B-tree或B+tree而不是二叉树作为索引结构
转载至:https://blog.csdn.net/sinat_27602945/article/details/80118362 B-Tree就是我们常说的B树,一定不要读成B减树,否则就很丢人了. ...
- volatile 修饰符的有过什么实践?
一种实践是用 volatile 修饰 long 和 double 变量,使其能按原子类型来读写. double 和 long 都是 64 位宽,因此对这两种类型的读是分为两部分的,第一次 读取第一个 ...
- Redis++:Redis做分布式锁真的靠谱吗
Redis做分布式锁真的靠谱吗 Redis的分布式锁可以通过Lua进行实现,通过setnx和expire命令连用的方式 || 也可以使用高版本的方法同时设置失效时间,但是假如在以下情况下,就会造成无锁 ...
- ACM - 图论 - P3385 负环
P3385 负环 题目描述 给定一个 \(n\) 个点的有向图,请求出图中是否存在从顶点 \(1\) 出发能到达的负环. 负环的定义是:一条边权之和为负数的回路. 输入格式 本题单测试点有多组测试数据 ...
- buuctf 荷兰带宽数据泄露
荷兰带宽数据泄露 下载附件得一个conf.bin文件,这个文件是路由信息文件,题目并没有任何提示,我们先来测试一下最简单的,找username或password然后当作flag交上去,我们使用Rout ...
- python中模块制作、发布、安装
模块的发布 需要在当前目录下 模块的安装 真实制作发布一个包 包的制作 (1)将写好的包放在moudelTest目录下 (2)moudelTest目录下创建一个setup.py文件(格式上面有介绍) ...
- labview和matlab区别
LabVIEW和MATLAB作为本身功能比较完善的软件环境,在各自不同的领域中有着十分广泛的应用.下面小编就详细介绍LabVIEW和MATLA以及它们之间的区别. 一.LabVIEW简介 LabVIE ...