题意

传送门

给定一张 \(n\) 个点 \(m\) 条边的无向图,每个节点有权值 \(v_i=\) \(0/1\)。角色从节点 \(1\) 开始随机游走,走到 \(n\) 停止。求其经过路径上权值和等于 \(k-1\) 的概率。经过多次算多次。保证 \(v_1=0,v_n=1\)。

\(1 \le n \le 500,1 \le m \le 10^5,2 \le k \le 10^9,1\le \sum v_i \le 101\)。

题解

首先考虑所有 \(v_i\) 都为 \(1\) 的情况。那么就是走 \(k-1\) 步。这个用矩阵快速幂 \(n^3 \log k\) 可以解决。

但此题不一定 \(v_i\) 都为 \(1\),且 \(n^3 \log k\) 会超时。发现 \(v_i=1\) 的节点个数 \(t\) 较小,开始思考 \(t^3 \log k\) 的算法。

我们称 \(v_i=1\) 的点为特殊点。参考上面的思路,我们只需求得从一个特殊点到另一个特殊点且途中不经过其他特殊点的概率即可。

不难想到转移方程:设 \(f_{i,j}\) 为从点 \(i\) 到特殊点 \(j\),且不经过其他特殊点的概率。\(g_{i,j}\) 为从特殊点 \(i\) 到特殊点 \(j\) 的概率。

那么当 \(i\) 为非特殊点时,有 \(\displaystyle f_{i,j}=\frac{\sum_{(u,i)\in E} f_{u,j}}{d_i}\)。当 \(i\) 为特殊点时,有 \(f_{i,i}=1\),\(\forall j \neq i,f_{i,j}=0\)。然后 \(\displaystyle g_{i,j}=\frac{\sum_{(u,i)\in E}f_{u,j}}{d_i}\)。

那么求出 \(f\) 即可。但我们发现 \(f\) 有 \(nt\) 个未知数,高斯消元是 \(n^3t^3\) 的,无法通过。怎么办呢?

发现 \(f\) 对于 \(j\) 是独立的。那么可以降到 \(n^3t\)。但还是无法通过。

复杂度到这里好像陷入了瓶颈。但把方程写出来,仔细观察可以发现对不同 \(j\),方程前面的系数部分是一样的,仅常数项有区别。那么我们想一想高斯消元的过程,可以将系数部分合并。那么矩阵变成了 \(n \times (n+t)\),复杂度是 \(n(n+t)^2\) 的,可以通过。

于是此题解决。

CF446D 题解的更多相关文章

  1. 【CF446D】DZY Loves Games 高斯消元+矩阵乘法

    [CF446D]DZY Loves Games 题意:一张n个点m条边的无向图,其中某些点是黑点,1号点一定不是黑点,n号点一定是黑点.问从1开始走,每次随机选择一个相邻的点走过去,经过恰好k个黑点到 ...

  2. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  3. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  4. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  5. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  6. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  7. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  8. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  9. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  10. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Codeforces 1492D、Genius's Gambit

    原题网址 https://codeforces.com/contest/1492/problem/D 题目大意 给定a,b,k,求x,y使得x和y的二进制表示都恰有a个0和b个1,且不能使用开头的0. ...

  2. vue 滑动到指定位置

    在Vue中,有三种方式可以实现H5页面滑动至指定位置 方法1: //先获取目标位置距离 mounted() { this.$nextTick(() => { setTimeout(() => ...

  3. windows10默认的EDGE浏览器进行切换窗口的操作修改

    Windows 10 修改 Alt+Tab 键 切换 新版 Microsoft Edge 单个标签页/窗口 解决方案:在 Windows 设置 的搜索框中 搜索 alt,选择 选择按下 Alt+Tab ...

  4. PYTHON中的CONCURRENT.FUTURES模块

    一 : 概述 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池,提供异 ...

  5. About TopoJSON

    An extension of GeoJSON that encodes topology!  TopoJSON https://github.com/topojson/topojson The To ...

  6. Python_基础_Print_转义字符和原字符

    转义字符和原字符 print('hello\nworld') #转义功能的首字母 n-->newline的首字母表示换行 print('hello\tworld') #\t即表示一个制表位 pr ...

  7. 宝塔部署 vue + thinkphp

    部署https://blog.csdn.net/xinxinsky/article/details/105441164?spm=1001.2101.3001.6650.2&utm_medium ...

  8. 2023-03-02 TypeError: null is not an object (evaluating 'ImageCropPicker.openPicker')

    问题描述:rn项目使用到了一个插件react-native-image-crop-picker,运行后报错. 原因:安装该插件的时候没有link到android包里. 解决方案: react-nati ...

  9. java时间日期API

    package java1; import org.junit.Test; import java.util.Date; /** * @author 高槐玉 * #Description JDK 8之 ...

  10. PS 查看进行状态

    原文:https://blog.csdn.net/lyndon_li/article/details/114295654 ps 查看进行状态有如下几种: ... PROCESS STATE CODES ...