ViT简述【Transformer】
Transformer在NLP任务中表现很好,但是在CV任务中应用还很有限,基本都是作为CNN的一个辅助,Vit尝试使用纯Transformer结构解决CV的任务,并成功将其应用到了CV的基本任务--图像分类中。
因此,简单而言,这篇论文的主旨就是,用Transformer结构完成图像分类任务。
结构概述
基本结构如下:
核心要点:
- 图像切patch
- Patch0
- Position Embedding
- Multi-Head Attention
图像切patch
在NLP任务中,将自然语言使用Word2Vec转为向量(Embedding)送入模型进行处理,在CV中没有对应的序列化token,因此作者采用将原始图像切分为多个小块,然后将每个小块儿内的信息展平的方式。
假设输入的shape为:(1, 3, 288, 288)
切分为9个小块,则每个小块的shape为:(1, 3, 32, 32)
然后将每个小块展平,则每个小块为(1, 3072)
,有9个小块,所以Linear Projection of Flattened Patched
的shape为:(1, 9, 3072)
输出shape为(1, 9, 1024)
,再加上Position Embedding,Transformer Encoder
的输入shape为(1, 10, 1024)
,也就是图中Embedded Patches
的shape。
Patch0
为什么需要有Patch0?
这是因为需要对1-9个patches信息的整合,最后送入MLP Head的只有Patch0。
Position Embedding
图像被切分和展开后,丢失了位置信息,对于图像处理任务来说,这是很怪异的,因此,作者这里采用在每个Patch上增加一个位置信息的方式,将位置信息纳入考虑。
Multi-Head Attention
参考Attention的基本结构。[Todo, Link]
代码[Pytorch]
import torch
from vit_pytorch import ViT
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
preds = v(img)
print(preds.shape) # 1000,与ViT定义的num_classes一致
ViT类参数解析:
- dim:Linear Projection的输出维度:1024
- depth:有多少个Transformer Blocks
- heads:Multi-Head的Head数
- mlp_dim:Transformer Encoder内部的MLP的维度
- dropout
- ......
ViT的forward
函数:
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)
输入端的切分主要由下面这句话完成:
x = self.to_patch_embedding(img)
==>
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
#由传入参数: image_size = 256, patch_size = 32
# Rearrange完成的shape变换为(b, c, 256, 256) -> (b, 64, 1024*c)
# nn.LayerNorm
# nn.Linear: (b, 64, 1024*c) --> (b, 64, 1024)
Rearrange用更加可理解的方式实现transpose的功能:
We don't write:
y = x.transpose(0, 2, 3, 1)
We write comprehensible code:
y = rearrange(x, 'b c h w -> b h w c')
ViT简述【Transformer】的更多相关文章
- VIT Vision Transformer | 先从PyTorch代码了解
文章原创自:微信公众号「机器学习炼丹术」 作者:炼丹兄 联系方式:微信cyx645016617 代码来自github [前言]:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了 ...
- ICCV2021 | Tokens-to-Token ViT:在ImageNet上从零训练Vision Transformer
前言 本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从 ...
- Transformer详解
0 简述 Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行. 并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提 ...
- 从零搭建Pytorch模型教程(三)搭建Transformer网络
前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. ...
- 论文阅读 | Transformer-XL: Attentive Language Models beyond a Fixed-Length Context
0 简述 Transformer最大的问题:在语言建模时的设置受到固定长度上下文的限制. 本文提出的Transformer-XL,使学习不再仅仅依赖于定长,且不破坏时间的相关性. Transforme ...
- attention、self-attention、transformer和bert模型基本原理简述笔记
attention 以google神经机器翻译(NMT)为例 无attention: encoder-decoder在无attention机制时,由encoder将输入序列转化为最后一层输出state ...
- ICCV2021 | TransFER:使用Transformer学习关系感知的面部表情表征
前言 人脸表情识别(FER)在计算机视觉领域受到越来越多的关注.本文介绍了一篇在人脸表情识别方向上使用Transformer来学习关系感知的ICCV2021论文,论文提出了一个TransFER ...
- ICCV2021 | PnP-DETR:用Transformer进行高效的视觉分析
前言 DETR首创了使用transformer解决视觉任务的方法,它直接将图像特征图转化为目标检测结果.尽管很有效,但由于在某些区域(如背景)上进行冗余计算,输入完整的feature maps ...
- pycaffe︱caffe中fine-tuning模型三重天(函数详解、框架简述)
本文主要参考caffe官方文档[<Fine-tuning a Pretrained Network for Style Recognition>](http://nbviewer.jupy ...
- 带你读Paper丨分析ViT尚存问题和相对应的解决方案
摘要:针对ViT现状,分析ViT尚存问题和相对应的解决方案,和相关论文idea汇总. 本文分享自华为云社区<[ViT]目前Vision Transformer遇到的问题和克服方法的相关论文汇总& ...
随机推荐
- webpack :There are multiple modules with names that only differ in casing
1, webpack版本3.6.0 2. 报warning文件为 node_modules 下面webpack 里的hot.js和dev-server.js 3. 没有出现模块名混用大小写 解决方法: ...
- 使用 SSH 连接 Git 服务器
关于 SSH SSH (Secure Shell) 是一种安全的远程登录协议,可以让你通过安全的加密连接进行远程登录.目前,Mac.Windows 10.Linux 系统均有内置 OpenSSH 客户 ...
- 如何让铁威马NAS可以通过互联网访问?
当你在家或者出差去外地时候,可能要通过互联网访问你的TNAS设备,而使用远程访问功能,你可以随时随地访问你的TNAS 设备.读取你TNAS 中的文件或是对你的TNAS 设备进行配置.远程访问能给你的工 ...
- Redis的数据持久化
介绍 Redis 的数据持久化方案 Redis 的数据持久化主要有两大机制,AOF 日志和 RDB 快照. AOF 持久化是通过保存 Redis 服务器所执行的写命令来记录数据库状态. RDB 持久化 ...
- uniapp 微信小程序 根据经纬度解析地址(腾讯地图)
//引入腾旭地图sdk import QQMapWX from '../../common/qqmap-wx-jssdk.js' onLoad(){ this.getMapAddress() }, m ...
- vue中mixins(混入)的用法
vue中mixin的使用详解 混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能.一个混入对象可以包含任意组件选项.当组件使用混入对象时,所有混入对象的选项将被&quo ...
- JavaScript:显式转换数据类型:如何转换为数值、字符串和布尔值类型?
JS的运算符以及某些内置函数,会自动进行数据类型的转换,方便计算,即隐式转换数据类型: 但是很多时候,我们希望可以手动控制数据类型的转换,即显示转换数据类型: 转换为字符串 String()函数 使用 ...
- Linux 环境中使用 LVGL
之前有记录过在 esp32 中使用 LVGL 的笔记,需要的小伙伴可以了解一下,esp-idf 移植 lvgl8.3.3 我之前整理的学习资料:https://www.cnblogs.com/jzcn ...
- CVE-2016-4437
漏洞名称 Apache shiro 1.2.4反序列化漏洞(CVE-2016-4437) 利用条件 Apache Shiro <= 1.2.4 漏洞原理 Shiro提供了记住我(Remember ...
- [LeetCode]至少是其他数字两倍的最大数
题目 代码 class Solution { public: int dominantIndex(vector<int>& nums) { vector<int> so ...