「题解报告」P7301 【[USACO21JAN] Spaced Out S】
神奇的5分算法:直接输出样例。
20分算法
直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低)。而在前四个测试点中\(N\le4\),用枚举算法在最坏情况下需要运行\(65536\)次,时间非常富裕,但是在之后的测试点中就会超时了。
50分算法
每四个方格内都有\(C^2_4=6\)种方法放置牛:
1 2 3 4 5 6
CC C. C. .C .C ..
.. C. .C C. .C CC
DFS每四个方格内的六种情况同时判断是否合法,时间复杂度约为\(O(6^{n^2})\)(因为有判断合法的剪枝所以会比这个低)。
部分参考代码:
int a[1001][1001],ans,n;
char v[1001][1001];
string d[]={"cc00","c0c0","c00c","0cc0","0c0c","00cc"};
int dx[]={0,0,1,1};
int dy[]={0,1,0,1};
void dfs(int x,int y){
int nextx=x,nexty=y+1;
if(nexty==n) nextx++,nexty = 1;
if(x>=n){
int newscore=0;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) newscore+=v[i][j]=='c'?a[i][j]:0;
ans=max(ans,newscore);//更新答案
return;
}
for(int i=0;i<6;i++){
int match=true;
string old="";
for(int j=0;j<4;j++) old+=v[x+dx[j]][y+dy[j]];
for(int j=0;j<4;j++){
int row=x+dx[j],col=y+dy[j];
if(v[row][col]!=' '&&v[row][col]!=d[i][j]){//判断是否合法
match=false;
break;
}
}
if(match){
for(int j=0;j<4;j++) v[x+dx[j]][y+dy[j]]=d[i][j];
dfs(nextx,nexty);
for(int j=0;j<4;j++) v[x+dx[j]][y+dy[j]]=old[j];
}//回溯
}
}
上面这份代码是我的神仙老师 @akic 写的,大家可以去膜拜他
满分算法
先给大家看几种合法的\(3\ast3\)放置方法:
C.C CC. C.C ..C
C.C ..C .C. CC.
.C. CC. C.C ..C
发现了吧,每一行或每一列的奶牛排列方式一定是交替排列的,而且上一行或上一列的交替排列方式对这一行或这一列交替排列方式没有影响,所以我们只需要先计算每一行的奇数列之和 和 偶数列之和 以及每一列的奇数行之和 和 偶数行之和(建议多读几遍,我当时都写晕了),再取每行的两种交替方式中的最大值,最后再取行上交替排列和列上交替排列的最大值就是答案了。
参考代码:
#include <bits/stdc++.h>
using namespace std;
int n,a,x[1010][2],y[1010][2],num,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
scanf("%d",&a),x[i][j%2]+=a,y[j][i%2]+=a;
for(int i=1;i<=n;++i)
num+=max(x[i][1],x[i][0]),ans+=max(y[i][1],y[i][0]);
printf("%d",max(num,ans));
return 0;
}//为什么大家的代码都这么长啊……
Update 1(2021/2/14):改正了50分算法的时间复杂度
「题解报告」P7301 【[USACO21JAN] Spaced Out S】的更多相关文章
- 「题解报告」 P3167 [CQOI2014]通配符匹配
「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...
- 「题解报告」P4577 [FJOI2018]领导集团问题
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...
- 「题解报告」P2154 虔诚的墓主人
P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...
- 「题解报告」SP16185 Mining your own business
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...
- 「题解报告」Blocks
P3503 Blocks 题解 原题传送门 思路 首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的.我们就把 ...
- 「题解报告」P3354
P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...
- 「题解报告」CF1067A Array Without Local Maximums
大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解 原题传送门 动态规划三部曲:确定状态,转移方程,初始状态和答案. --神 ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
随机推荐
- 认识一下什么是JSP
摘要:JSP,全称是Java Server Pages,即Java服务器页面,是由Sun Microsystems公司主导创建的一种动态网页技术标准. 本文分享自华为云社区<Java服务器页面- ...
- 万字剖析Ribbon核心组件以及运行原理
大家好,本文我将继续来剖析SpringCloud中负载均衡组件Ribbon的源码.本来我是打算接着OpenFeign动态代理生成文章直接讲Feign是如何整合Ribbon的,但是文章写了一半发现,如果 ...
- C语言学习之我见-strncat()可调整的字符串拼接函数
strncat()函数,用于两个字符串的拼接. (1)函数原型 char * strncat(char * Dest,const char * Source,size_t _Count)` (2)头文 ...
- SAP FPM 相关包 APB_FPM_CORE
related interface: APB_FPM_COREAPB_FPM_CORE_4_EXT_SCAPB_FPM_CORE_INTERNALAPB_FPM_CORE_RESTRICTED
- 《Java编程思想》学习笔记_多态
多态 多态指一个行为产生多种状态,针对父类类型可接收其子类类型,最终执行的状态由具体子类确定,其不同子类可呈现出不同状态.例如人[父类]都会跑步[行为],但小孩[子类]跑步.成年人[子类]跑步.运动员 ...
- RPA应用场景-账套建立
所涉人工数量5操作频率 不定时 场景流程 1.客户按照项目开设专项财务管理,每个项目需要在初期建立自己的账套: 2.运营专员通过邮件发送账套建立申请: 3.根据申请进入金蝶运维后台,依据规则完成账套建 ...
- Linux操作系统(3):crond 任务调度
crontab 进行 定时任务的设置.概述: 任务调度:是指系统在某个时间执行的特定的命令或程序. 任务调度分类: 1.系统工作:有些重要的工作必须周而复始地执行.如病毒扫描等 2.个别用户工作:个别 ...
- 递归概念&分类&注意事项和练习_使用递归计算1-n之间的和
递归:方法自己调用自己 递归的分类: 递归分为两种,直接递归和间接递归 直接递归称为方法自身调用自己 间接递归可以A方法调用B方法,B方法调用C方法,C方法调用A方法 注意事项: 递归一定要有条件限定 ...
- python特殊运算符
一.逻辑运算符 x = False y = True print(x & y)#仅在布尔中使用 print(x and y)#并且 print(x | y)#仅在布尔中使用 print(x o ...
- APISpace 让你快速获取名言警句
名言警句,是指一些名人说的.写的.历史纪录的.经过实践所得出的结论或建议.警示的比较有名的言语.名言警句易于留传. 名言警句API,涵盖人生.励志等多个方面. APISpace 有很多免费通用 ...