Codeforeces 13B
Codeforeces 13B-Letter A
二维基础
题目链接:https://codeforces.com/problemset/problem/13/B
题意:给定三条线段,判断三条线段是否是“A”形的。“A”形的定义如下:
- 线段A和线段B有一个公共点。
- 线段C的两个端点分别位于线段A和线段B上。
- 线段A和线段B所形成的夹角在\((0^\circ,90^\circ]\)。
- 线段C分线段A为\(x_1\)和\(x_2\)两部分且较短线段与较长线段的比值大于等于\(1/4\),线段B亦是。
思路:这是一道十分基础的练习题。只需要读取输入后按照条件一项一项判断即可。对于每一个条件,我们可以这样判断:
- 在给定的6个端点中有且仅有2个点的坐标一致。
- 设线段A的两个端点为\(a_1和a_2\)且线段C的端点\(c_1\)在线段A上,则有\(\vec {c_1a_1} \times \vec{c_1a_2} = 0\) 并且 \(\vec {c_1a_1} \cdot \vec{c_1a_2} < 0\),线段B同理。
- 设线段A和线段B的公共点为\(x_1\),各自另外一点分别为\(a_1,b_1\),则有\(\vec {x_1a_1} \cdot \vec{x_1b_1} \geq 0\) 并且 \(\vec {x_1a_1} \times \vec{x_1b_1} \neq 0\)。
- 设线段A的两个端点为\(a_1和a_2\)且线段C的端点\(c_1\)在线段A上, 则有\(16*min(\vert \vec {c_1a_1}\vert^2,\vert \vec {c_1a_2}\vert^2) \geq max(\vert \vec {c_1a_1}\vert^2,\vert \vec {c_1a_2}\vert^2)\),线段B同理。
*此处使用线段长度的平方判断,避免开根号带来的精度误差。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define ywh666 std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define all(a) a.begin(),a.end()
typedef long long ll ;
using _T = long long;//long long
const _T eps = 0;// 0
template<typename T> struct point
{
T x,y;
void read(){cin >> x >> y;}
bool operator<(const point &a) const
{if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
bool operator>(const point &a) const
{return !(*this<a || *this==a);}
bool operator==(const point &a) const
{return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
bool operator!=(const point &a) const
{return (abs(x-a.x)>eps || abs(y-a.y)>eps);}
point operator+(const point &a) const {return {x+a.x,y+a.y};}
point operator-(const point &a) const {return {x-a.x,y-a.y};}
point operator-() const {return {-x,-y};}
point operator*(const T k) const {return {k*x,k*y};}
point operator/(const T k) const {return {x/k,y/k};}
T operator*(const point &a) const {return x*a.x+y*a.y;}
T operator^(const point &a) const {return x*a.y-y*a.x;}
T dis2(const point &a) const {return (a-(*this)).len2();}
T len2() const {return (*this)*(*this);}
};
using Point = point<_T>;
map<Point, int> mp;
bool check(Point bo, Point end1, Point end2, Point a1, Point a2){
if(((end1 - bo) ^ (end2 - bo)) == 0) return 0 ;
if(((end1 - bo) * (end2 - bo)) < 0) return 0 ;
if(((end1 - a1) ^ (bo - a1)) == 0 &&((end1 - a1) * (bo - a1) < 0)
&& ((end2 - a2) ^ (bo - a2)) == 0 &&((end2 - a2) * (bo - a2) < 0)){
if(16 * min(bo.dis2(a1), a1.dis2(end1)) >= max(bo.dis2(a1), a1.dis2(end1)) &&
16 * min(bo.dis2(a2), a2.dis2(end2)) >= max(bo.dis2(a2), a2.dis2(end2))){
return 1 ;
}else{
return 0 ;
}
}else if(((end1 - a2) ^ (bo - a2)) == 0 &&((end1 - a2) * (bo - a2) < 0)
&& ((end2 - a1) ^ (bo - a1)) == 0 &&((end2 - a1) * (bo - a1) < 0)){
if(16 * min(bo.dis2(a2), a2.dis2(end1)) >= max(bo.dis2(a2), a2.dis2(end1)) &&
16 * min(bo.dis2(a1), a1.dis2(end2)) >= max(bo.dis2(a1), a1.dis2(end2))){
return 1 ;
}else{
return 0 ;
}
}else{
return 0 ;
}
}
void solve(){
Point a[6];
mp.clear();
for(int i = 0 ; i < 6 ; i ++) {
a[i].read();
mp[a[i]] ++;
}
bool f = 0 ;
Point both;
for(auto i : mp){
if(i.second == 2 && !f){
both = i.first;
f = 1;
}else if(i.second != 1){
cout << "NO" << endl;
return ;
}
}
if(!f){
cout << "NO" << endl;
return ;
}
mp.clear();
Point cnt[4];
int nn = 0 ;
for(int i = 0 ; i < 6 ; i ++){
if(a[i] == both){
cnt[nn ++] = a[(((i & 1) == 1) ? (i - 1) : (i + 1))];
mp[cnt[nn - 1]] ++;
}
}
for(int i = 0 ; i < 6 ; i ++){
if(!mp.count(a[i]) && a[i] != both) cnt[nn ++] = a[i];
}
bool ff = check(both, cnt[0], cnt[1], cnt[2], cnt[3]);
if(ff){
cout << "YES" << endl;
}else{
cout << "NO" << endl;
}
return ;
}
int main(){
ywh666;
int t ;
cin >> t;
while(t --){
solve();
}
return 0 ;
}
Codeforeces 13B的更多相关文章
- codeforeces近日题目小结
题目源自codeforeces的三场contest contest/1043+1055+1076 目前都是solved 6/7,都差了最后一题 简单题: contest/1043/E: 先不考虑m个限 ...
- Codeforeces 617E XOR and Favorite Number(莫队+小技巧)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- Codeforeces 707B Bakery(BFS)
B. Bakery time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- 牛客练习赛13B 幸运数字2
题目链接:https://ac.nowcoder.com/acm/contest/70/B 题目大意: 略 分析: 先DFS求出所有幸运数,然后暴力即可 代码如下: #pragma GCC optim ...
- CodeForeces 25E (kmp)
E. Test time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputst ...
- CodeForeces 665C Simple Strings
C. Simple Strings time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- codeforeces:Mister B and Astronomers分析和实现
题目很长,稍微翻译一下: 外星球每隔T秒中只有一秒可以被观测到,其它T-1秒无法被观测.n个天文学家(分别编号为1,...,n)轮流观测天空1秒,且第i+1个科学家在第i个天文学家后ai+1秒后才执行 ...
- Codeforeces 954C Matrix Walk
题目大意 考虑一个 $x\times y$ 的矩阵 $A_{x\times y}$ ,$A_{i,j} = (i-1)x+y$ . 从矩阵中的某个位置出发,每次可向上下左右移动一步,每到一个位置,记录 ...
- CodeForeces 842d Vitya and Strange Lesson ——(带lazy标记的01字典树)
给一个序列,每次操作对这个序列中的所有数异或一个x,问每次操作完以后整个序列的mex值. 做法是去重后构建01字典树,异或x就是对root加一个x的lazy标志,每次pushDown时如果lazy的这 ...
随机推荐
- MySQL—索引(Index)
前言: 关于MySql索引数据结构和实现原理的讲解值得阅读一下: 实现原理:https://www.cnblogs.com/songwenjie/p/9415016.htm 索引数据结构:https: ...
- MM32F0140的复位脚nRST复用成普通GPIO PA10功能
目录: 1.MM32F0020简介 2.MM32F0020的复位脚nRST和PA10的说明 3.MM32F0020的选项字节说明 4.MM32F0020的FLASH_OBR选项字节寄存器说明 5.MM ...
- 什么是 Apache Kafka?
Apache Kafka 是一个分布式发布 - 订阅消息系统.它是一个可扩展的,容错的 发布 - 订阅消息系统,它使我们能够构建分布式应用程序.这是一个 Apache 顶 级项目.Kafka 适合离线 ...
- 使用mqtt+ssl加密 WebSocket 客户端连接 MQTT 服务器以及ws+wss协议
上篇用TLS/SSL保证EMQ的网络传输安全讲了使用自签ca加密MQTT传输数据,如果mqtt用在web端,如何使用ssl.tsl加密? 1.web客户端 // 引入mqtt.min.js // 将在 ...
- Zookeeper 的 java 客户端都有哪些?
java 客户端:zk 自带的 zkclient 及 Apache 开源的 Curator.
- 学习Cobbler(一)
一. http://cobbler.github.io/ Cobbler is a Linux installation server that allows for rapid setup of n ...
- .NET面试题整理
.NET..NET Framework..NET Core和C#的解释各是什么? ASP.NET MVC和ASP.NET Web API的区别是什么? C#中的委托是什么?事件是不是一种委托? 简述P ...
- 一个未知宽高的元素在div中垂直水平居中
<body> <div id="#div1"> <img src="img1.png"></img> </ ...
- gulp详细基础教程
一.gulp简介 1.gulp是什么? gulp是前端开发过程中一种基于流的代码构建工具,是自动化项目的构建利器:它不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成: ...
- java中接口interface和private私有内部类怎样一块配合着用?
3.接口interface和private内部类协同工作[新手可忽略不影响继续学习]马克-to-win:由于是private内部类,外面无法访问甚至无法看到你编的源代码(如果在不同的包中),非常安全. ...