Codeforeces 13B-Letter A

二维基础

题目链接:https://codeforces.com/problemset/problem/13/B
题意:给定三条线段,判断三条线段是否是“A”形的。“A”形的定义如下:
  1. 线段A和线段B有一个公共点。
  2. 线段C的两个端点分别位于线段A和线段B上。
  3. 线段A和线段B所形成的夹角在\((0^\circ,90^\circ]\)。
  4. 线段C分线段A为\(x_1\)和\(x_2\)两部分且较短线段与较长线段的比值大于等于\(1/4\),线段B亦是。
思路:这是一道十分基础的练习题。只需要读取输入后按照条件一项一项判断即可。对于每一个条件,我们可以这样判断:
  1. 在给定的6个端点中有且仅有2个点的坐标一致。
  2. 设线段A的两个端点为\(a_1和a_2\)且线段C的端点\(c_1\)在线段A上,则有\(\vec {c_1a_1} \times \vec{c_1a_2} = 0\) 并且 \(\vec {c_1a_1} \cdot \vec{c_1a_2} < 0\),线段B同理。
  3. 设线段A和线段B的公共点为\(x_1\),各自另外一点分别为\(a_1,b_1\),则有\(\vec {x_1a_1} \cdot \vec{x_1b_1} \geq 0\) 并且 \(\vec {x_1a_1} \times \vec{x_1b_1} \neq 0\)。
  4. 设线段A的两个端点为\(a_1和a_2\)且线段C的端点\(c_1\)在线段A上, 则有\(16*min(\vert \vec {c_1a_1}\vert^2,\vert \vec {c_1a_2}\vert^2) \geq max(\vert \vec {c_1a_1}\vert^2,\vert \vec {c_1a_2}\vert^2)\),线段B同理。
    *此处使用线段长度的平方判断,避免开根号带来的精度误差。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define ywh666 std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define all(a) a.begin(),a.end()
typedef long long ll ;
using _T = long long;//long long
const _T eps = 0;// 0
template<typename T> struct point
{
T x,y;
void read(){cin >> x >> y;}
bool operator<(const point &a) const
{if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
bool operator>(const point &a) const
{return !(*this<a || *this==a);}
bool operator==(const point &a) const
{return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
bool operator!=(const point &a) const
{return (abs(x-a.x)>eps || abs(y-a.y)>eps);}
point operator+(const point &a) const {return {x+a.x,y+a.y};}
point operator-(const point &a) const {return {x-a.x,y-a.y};}
point operator-() const {return {-x,-y};}
point operator*(const T k) const {return {k*x,k*y};}
point operator/(const T k) const {return {x/k,y/k};}
T operator*(const point &a) const {return x*a.x+y*a.y;}
T operator^(const point &a) const {return x*a.y-y*a.x;}
T dis2(const point &a) const {return (a-(*this)).len2();}
T len2() const {return (*this)*(*this);}
}; using Point = point<_T>;
map<Point, int> mp;
bool check(Point bo, Point end1, Point end2, Point a1, Point a2){
if(((end1 - bo) ^ (end2 - bo)) == 0) return 0 ;
if(((end1 - bo) * (end2 - bo)) < 0) return 0 ;
if(((end1 - a1) ^ (bo - a1)) == 0 &&((end1 - a1) * (bo - a1) < 0)
&& ((end2 - a2) ^ (bo - a2)) == 0 &&((end2 - a2) * (bo - a2) < 0)){
if(16 * min(bo.dis2(a1), a1.dis2(end1)) >= max(bo.dis2(a1), a1.dis2(end1)) &&
16 * min(bo.dis2(a2), a2.dis2(end2)) >= max(bo.dis2(a2), a2.dis2(end2))){
return 1 ;
}else{
return 0 ;
}
}else if(((end1 - a2) ^ (bo - a2)) == 0 &&((end1 - a2) * (bo - a2) < 0)
&& ((end2 - a1) ^ (bo - a1)) == 0 &&((end2 - a1) * (bo - a1) < 0)){
if(16 * min(bo.dis2(a2), a2.dis2(end1)) >= max(bo.dis2(a2), a2.dis2(end1)) &&
16 * min(bo.dis2(a1), a1.dis2(end2)) >= max(bo.dis2(a1), a1.dis2(end2))){
return 1 ;
}else{
return 0 ;
}
}else{
return 0 ;
}
}
void solve(){
Point a[6];
mp.clear();
for(int i = 0 ; i < 6 ; i ++) {
a[i].read();
mp[a[i]] ++;
}
bool f = 0 ;
Point both;
for(auto i : mp){
if(i.second == 2 && !f){
both = i.first;
f = 1;
}else if(i.second != 1){
cout << "NO" << endl;
return ;
}
}
if(!f){
cout << "NO" << endl;
return ;
}
mp.clear();
Point cnt[4];
int nn = 0 ;
for(int i = 0 ; i < 6 ; i ++){
if(a[i] == both){
cnt[nn ++] = a[(((i & 1) == 1) ? (i - 1) : (i + 1))];
mp[cnt[nn - 1]] ++;
}
}
for(int i = 0 ; i < 6 ; i ++){
if(!mp.count(a[i]) && a[i] != both) cnt[nn ++] = a[i];
}
bool ff = check(both, cnt[0], cnt[1], cnt[2], cnt[3]);
if(ff){
cout << "YES" << endl;
}else{
cout << "NO" << endl;
}
return ; }
int main(){
ywh666;
int t ;
cin >> t;
while(t --){
solve();
}
return 0 ;
}

Codeforeces 13B的更多相关文章

  1. codeforeces近日题目小结

    题目源自codeforeces的三场contest contest/1043+1055+1076 目前都是solved 6/7,都差了最后一题 简单题: contest/1043/E: 先不考虑m个限 ...

  2. Codeforeces 617E XOR and Favorite Number(莫队+小技巧)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  3. Codeforeces 707B Bakery(BFS)

    B. Bakery time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. 牛客练习赛13B 幸运数字2

    题目链接:https://ac.nowcoder.com/acm/contest/70/B 题目大意: 略 分析: 先DFS求出所有幸运数,然后暴力即可 代码如下: #pragma GCC optim ...

  5. CodeForeces 25E (kmp)

    E. Test time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputst ...

  6. CodeForeces 665C Simple Strings

    C. Simple Strings time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. codeforeces:Mister B and Astronomers分析和实现

    题目很长,稍微翻译一下: 外星球每隔T秒中只有一秒可以被观测到,其它T-1秒无法被观测.n个天文学家(分别编号为1,...,n)轮流观测天空1秒,且第i+1个科学家在第i个天文学家后ai+1秒后才执行 ...

  8. Codeforeces 954C Matrix Walk

    题目大意 考虑一个 $x\times y$ 的矩阵 $A_{x\times y}$ ,$A_{i,j} = (i-1)x+y$ . 从矩阵中的某个位置出发,每次可向上下左右移动一步,每到一个位置,记录 ...

  9. CodeForeces 842d Vitya and Strange Lesson ——(带lazy标记的01字典树)

    给一个序列,每次操作对这个序列中的所有数异或一个x,问每次操作完以后整个序列的mex值. 做法是去重后构建01字典树,异或x就是对root加一个x的lazy标志,每次pushDown时如果lazy的这 ...

随机推荐

  1. MySQL—索引(Index)

    前言: 关于MySql索引数据结构和实现原理的讲解值得阅读一下: 实现原理:https://www.cnblogs.com/songwenjie/p/9415016.htm 索引数据结构:https: ...

  2. MM32F0140的复位脚nRST复用成普通GPIO PA10功能

    目录: 1.MM32F0020简介 2.MM32F0020的复位脚nRST和PA10的说明 3.MM32F0020的选项字节说明 4.MM32F0020的FLASH_OBR选项字节寄存器说明 5.MM ...

  3. 什么是 Apache Kafka?

    Apache Kafka 是一个分布式发布 - 订阅消息系统.它是一个可扩展的,容错的 发布 - 订阅消息系统,它使我们能够构建分布式应用程序.这是一个 Apache 顶 级项目.Kafka 适合离线 ...

  4. 使用mqtt+ssl加密 WebSocket 客户端连接 MQTT 服务器以及ws+wss协议

    上篇用TLS/SSL保证EMQ的网络传输安全讲了使用自签ca加密MQTT传输数据,如果mqtt用在web端,如何使用ssl.tsl加密? 1.web客户端 // 引入mqtt.min.js // 将在 ...

  5. Zookeeper 的 java 客户端都有哪些?

    java 客户端:zk 自带的 zkclient 及 Apache 开源的 Curator.

  6. 学习Cobbler(一)

    一. http://cobbler.github.io/ Cobbler is a Linux installation server that allows for rapid setup of n ...

  7. .NET面试题整理

    .NET..NET Framework..NET Core和C#的解释各是什么? ASP.NET MVC和ASP.NET Web API的区别是什么? C#中的委托是什么?事件是不是一种委托? 简述P ...

  8. 一个未知宽高的元素在div中垂直水平居中

    <body> <div id="#div1"> <img src="img1.png"></img> </ ...

  9. gulp详细基础教程

    一.gulp简介 1.gulp是什么? gulp是前端开发过程中一种基于流的代码构建工具,是自动化项目的构建利器:它不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成: ...

  10. java中接口interface和private私有内部类怎样一块配合着用?

    3.接口interface和private内部类协同工作[新手可忽略不影响继续学习]马克-to-win:由于是private内部类,外面无法访问甚至无法看到你编的源代码(如果在不同的包中),非常安全. ...