OpenCV-Python:IV OpenCV中的图像处理

21 OpenCV 中的轮廓

21.1 初识轮廓

目标
  • 理解什么是轮廓
  • 学习找轮廓,绘制轮廓等
  • 函数:cv2.findContours(),cv2.drawContours()

21.1.1 什么是轮廓

轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同、的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
  • 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理、或者 Canny 边界检测。
  • 查找轮廓的函数会修改原始图像。如果你在找到轮廓之后还想使用原始图、像的话,你应该将原始图像存储到其他变量中。
  • 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体。你应该记住,、要找的物体应该是白色而背景应该是黑色。
让我们看看如何在一个二值图像中查找轮廓:
  函数 cv2.findContours() 有三个参数,第一个是输入图像,第二个是轮廓检索模式,第三个是轮廓近似方法。返回值有三个,第一个是图像,第二个是轮廓,第三个是(轮廓的)层析结构。轮廓(第二个返回值)是一个 Python列表,其中存储这图像中的所有轮廓。每一个轮廓都是一个 Numpy 数组,包含对象边界点(x,y)的坐标。
注意:我们后边会对第二和第三个参数,以及层次结构进行详细介绍。在那之前,例子中使用的参数值对所有图像都是适用的。

21.1.2 怎样绘制轮廓

函数 cv2.drawContours() 可以被用来绘制轮廓。它可以根据你提供的边界点绘制任何形状。它的第一个参数是原始图像,第二个参数是轮廓,一个 Python 列表。第三个参数是轮廓的索引(在绘制独立轮廓是很有用,当设置为 -1 时绘制所有轮廓)。接下来的参数是轮廓的颜色和厚度等。
在一幅图像上绘制所有的轮廓:

import numpy as np
import cv2
im = cv2.imread('test.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
绘制独立轮廓,如第四个轮廓:
img = cv2.drawContour(img, contours, -1, (0,255,0), 3)
但是大多数时候,下面的方法更有用:
img = cv2.drawContours(img, contours, 3, (0,255,0), 3)

注意:最后这两种方法结果是一样的,但是后边的知识会告诉你最后一种方法更有用。

21.1.3 轮廓的近似方法

这是函数 cv2.findCountours() 的第三个参数。它到底代表什么意思呢?
上边我们已经提到轮廓是一个形状具有相同灰度值的边界。它会存贮形状边界上所有的 (x,y) 坐标。但是需要将所有的这些边界点都存储吗?这就是这个参数要告诉函数 cv2.findContours 的。
这个参数如果被设置为 cv2.CHAIN_APPROX_NONE,所有的边界点都会被存储。但是我们真的需要这么多点吗?例如,当我们找的边界是一条直线时。你用需要直线上所有的点来表示直线吗?不是的,我们只需要这条直线的两个端点而已。这就是 cv2.CHAIN_APPROX_SIMPLE 要做的。它会将轮廓上的冗余点都去掉,压缩轮廓,从而节省内存开支。我们用下图中的矩形来演示这个技术。在轮廓列表中的每一个坐标上画一个蓝色圆圈。第一个图显示使用 cv2.CHAIN_APPROX_NONE 的效果,一共 734 个点。第二个图是使用 cv2.CHAIN_APPROX_SIMPLE 的结果,只有 4 个点。看到他的威力了吧!

21.2 轮廓特征

目标
  • 查找轮廓的不同特征,例如面积,周长,重心,边界框等。
  • 你会学到很多轮廓相关函数

21.2.1 矩

图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。
函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:

import cv2
import numpy as np img = cv2.imread('star.jpg',0)
ret,thresh = cv2.threshold(img,127,255,0)
contours,hierarchy = cv2.findContours(thresh, 1, 2) cnt = contours[0]
M = cv2.moments(cnt)
print M

根据这些矩的值,我们可以计算出对象的重心:

#This can be done as follows:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])

1.2.2 轮廓面积

轮廓的面积可以使用函数 cv2.contourArea() 计算得到,也可以使用矩(0 阶矩),M[‘m00’]。

area = cv2.contourArea(cnt)

21.2.3 轮廓周长

也被称为弧长。可以使用函数 cv2.arcLength() 计算得到。这个函数的第二参数可以用来指定对象的形状是闭合的(True),还是打开的(一条曲线)。

perimeter = cv2.arcLength(cnt,True)

21.2.4 轮廓近似
  将轮廓形状近似到另外一种由更少点组成的轮廓形状,新轮廓的点的数目由我们设定的准确度来决定。使用的Douglas-Peucker算法,你可以到维基百科获得更多此算法的细节。
为了帮助理解,假设我们要在一幅图像中查找一个矩形,但是由于图像的种种原因,我们不能得到一个完美的矩形,而是一个“坏形状”(如下图所示)。
现在你就可以使用这个函数来近似这个形状()了。这个函数的第二个参数叫epsilon,它是从原始轮廓到近似轮廓的最大距离。它是一个准确度参数。选择一个好的 epsilon 对于得到满意结果非常重要。

epsilon = 0.1*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)

下边,第二幅图中的绿线是当 epsilon = 10% 时得到的近似轮廓,第三幅图是当 epsilon = 1% 时得到的近似轮廓。第三个参数设定弧线是否闭合。

21.2.5 凸包

凸包与轮廓近似相似,但不同,虽然有些情况下它们给出的结果是一样的。
  函数 cv2.convexHull() 可以用来检测一个曲线是否具有凸性缺陷,并能纠正缺陷。一般来说,凸性曲线总是凸出来的,至少是平的。如果有地方凹进去了就被叫做凸性缺陷。例如下图中的手。红色曲线显示了手的凸包,凸性缺陷被双箭头标出来了。


关于他的语法还有一些需要交代:

hull = cv2.convexHull(points[, hull[, clockwise[, returnPoints]]

参数:
  • points 我们要传入的轮廓
  • hull 输出,通常不需要
  • clockwise 方向标志。如果设置为 True,输出的凸包是顺时针方向的。否则为逆时针方向。
  • returnPoints 默认值为 True。它会返回凸包上点的坐标。如果设置为 False,就会返回与凸包点对应的轮廓上的点。
要获得上图的凸包,下面的命令就够了:

hull = cv2.convexHull(cnt)

但是如果你想获得凸性缺陷,需要把 returnPoints 设置为 False。以上面的矩形为例,首先我们找到他的轮廓 cnt。现在我把 returnPoints 设置为 True 查找凸包,我得到下列值:
[[[234 202]], [[ 51 202]], [[ 51 79]], [[234 79]]],其实就是矩形的四个角点。
现在把 returnPoints 设置为 False,我得到的结果是[[129],[ 67],[ 0],[142]]。他们是轮廓点的索引。例如:cnt[129] = [[234,202]],这与前面我们得到结果的第一个值是一样的。

在凸检验中你我们还会遇到这些。

21.2.6 凸性检测

函数 cv2.isContourConvex() 可以可以用来检测一个曲线是不是凸的。它只能返回 True 或 False。没什么大不了的。

k = cv2.isContourConvex(cnt)

21.2.7 边界矩形

有两类边界矩形。
  直边界矩形 一个直矩形(就是没有旋转的矩形)。它不会考虑对象是否旋转。所以边界矩形的面积不是最小的。可以使用函数 cv2.boundingRect() 查找得到。
(x,y)为矩形左上角的坐标,(w,h)是矩形的宽和高。

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

旋转的边界矩形 这个边界矩形是面积最小的,因为它考虑了对象的旋转。用到的函数为 cv2.minAreaRect()。返回的是一个 Box2D 结构,其中包含矩形左上角角点的坐标(x,y),矩形的宽和高(w,h),以及旋转角度。但是要绘制这个矩形需要矩形的 4 个角点,可以通过函数 cv2.boxPoints() 获得。

rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
im = cv2.drawContours(im,[box],0,(0,0,255),2)

把这两中边界矩形显示在下图中,其中绿色的为直矩形,红的为旋转矩形。

1.2.8 最小外接圆

函数 cv2.minEnclosingCircle() 可以帮我们找到一个对象的外切圆。
  它是所有能够包括对象的圆中面积最小的一个。

(x,y),radius = cv2.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
img = cv2.circle(img,center,radius,(0,255,0),2)

21.2.9 椭圆拟合

使用的函数为 cv2.ellipse(),返回值其实就是旋转边界矩形的内切圆。

ellipse = cv2.fitEllipse(cnt)
im = cv2.ellipse(im,ellipse,(0,255,0),2)

21.2.10 直线拟合

我们可以根据一组点拟合出一条直线,同样我们也可以为图像中的白色点拟合出一条直线。

rows,cols = img.shape[:2]
#cv2.fitLine(points, distType, param, reps, aeps[, line ]) → line
#points – Input vector of 2D or 3D points, stored in std::vector<> or Mat.
#line – Output line parameters. In case of 2D fitting, it should be a vector of
#4 elements (likeVec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized
#vector collinear to the line and (x0, y0) is a point on the line. In case of
#3D fitting, it should be a vector of 6 elements (like Vec6f) - (vx, vy, vz,
#x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
#and (x0, y0, z0) is a point on the line.
#distType – Distance used by the M-estimator
#distType=CV_DIST_L2
#ρ(r) = r2 /2 (the simplest and the fastest least-squares method)
#param – Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
#is chosen.
#reps – Sufficient accuracy for the radius (distance between the coordinate origin and the
#line).
#aeps – Sufficient accuracy for the angle. 0.01 would be a good default value for reps and
#aeps.
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) + y)
righty = int(((cols-x)*vy/vx)+y)
img = cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)

21.3 轮廓的性质

本小节我们将要学习提取一些经常使用的对象特征。你可以在Matlab regionprops documentation 更多的图像特征。

21.3.1 长宽比
  边界矩形的宽高比
      

x,y,w,h = cv2.boundingRect(cnt)
aspect_ratio = float(w)/h

21.3.2 Extent

轮廓面积与边界矩形面积的比。
      

area = cv2.contourArea(cnt)
x,y,w,h = cv2.boundingRect(cnt)
rect_area = w*h
extent = float(area)/rect_area

21.3.3 Solidity

轮廓面积与凸包面积的比。
      

area = cv2.contourArea(cnt)
hull = cv2.convexHull(cnt)
hull_area = cv2.contourArea(hull)
solidity = float(area)/hull_area

21.3.4 Equivalent Diameter

与轮廓面积相等的圆形的直径
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4u8NRjk9-1611980309052)(http://opencv-python-tutroals.readthedocs.io/en/latest/_images/math/dd455145891023674d52ad7f48d9ff5a2613e49b.png)]

area = cv2.contourArea(cnt)
equi_diameter = np.sqrt(4*area/np.pi)

21.3.5 方向

对象的方向,下面的方法还会返回长轴和短轴的长度

(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

21.3.6 掩模和像素点
  有时我们需要构成对象的所有像素点,我们可以这样做:

mask = np.zeros(imgray.shape,np.uint8)
# 这里一定要使用参数 -1, 绘制填充的的轮廓
cv2.drawContours(mask,[cnt],0,255,-1)
#Returns a tuple of arrays, one for each dimension of a,
#containing the indices of the non-zero elements in that dimension.
#The result of this is always a 2-D array, with a row for
#each non-zero element.
#To group the indices by element, rather than dimension, use:
#transpose(nonzero(a))
#>>> x = np.eye(3)
#>>> x
#array([[ 1., 0., 0.],
# [ 0., 1., 0.],
# [ 0., 0., 1.]])
#>>> np.nonzero(x)
#(array([0, 1, 2]), array([0, 1, 2]))
#>>> x[np.nonzero(x)]
#array([ 1., 1., 1.])
#>>> np.transpose(np.nonzero(x))
#array([[0, 0],
# [1, 1],
# [2, 2]])
pixelpoints = np.transpose(np.nonzero(mask))
#pixelpoints = cv2.findNonZero(mask)
# 官方代码
mask = np.zeros(imgray.shape,np.uint8)
cv2.drawContours(mask,[cnt],0,255,-1)
pixelpoints = np.transpose(np.nonzero(mask))
#pixelpoints = cv2.findNonZero(mask)

这里我们是用来两种方法,第一种方法使用了 Numpy 函数,第二种使用了 OpenCV 函数。结果相同,但还是有点不同。Numpy 给出的坐标是 (row ,colum )
形式的。而 OpenCV 给出的格式是 (x ,y )形式的。所以这两个结果基本是可以互换的。row=x,colunm=y。

21.3.7 最大值和最小值及它们的位置

我们可以使用掩模图像得到这些参数。

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)

21.3.8 平均颜色及平均灰度

我们也可以使用相同的掩模求一个对象的平均颜色或平均灰度

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)

21.3.9 极点

一个对象最上面,最下面,最左边,最右边的点。

leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0]

如下图所示:

21.4 轮廓:更多函数

目标
我们要学习
  • 凸缺陷,以及如何找凸缺陷
  • 找某一点到一个多边形的最短距离
  • 不同形状的匹配
原理与代码

21.4.1 凸缺陷

前面我们已经学习了轮廓的凸包,对象上的任何凹陷都被成为凸缺陷。OpenCV 中有一个函数 cv.convexityDefect() 可以帮助我们找到凸缺陷。函数调用如下:

hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)

注意:如果要查找凸缺陷,在使用函数 cv2.convexHull 找凸包时,参数returnPoints 一定要是 False。
它会返回一个数组,其中每一行包含的值是 [起点,终点,最远的点,到最远点的近似距离]。我们可以在一张图上显示它。我们将起点和终点用一条绿线连接,在最远点画一个圆圈,要记住的是返回结果的前三个值是轮廓点的索引。
所以我们还要到轮廓点中去找它们。

import cv2
import numpy as np img = cv2.imread('star.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255,0)
contours,hierarchy = cv2.findContours(thresh,2,1)
cnt = contours[0] hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull) for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
cv2.line(img,start,end,[0,255,0],2)
cv2.circle(img,far,5,[0,0,255],-1) cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果如下:

21.4.2 Point Polygon Test

求解图像中的一个点到一个对象轮廓的最短距离。如果点在轮廓的外部,
返回值为负。如果在轮廓上,返回值为 0。如果在轮廓内部,返回值为正。

下面我们以点(50,50)为例:

dist = cv2.pointPolygonTest(cnt,(50,50),True)

此函数的第三个参数是 measureDist。如果设置为 True,就会计算最短距离。如果是 False,只会判断这个点与轮廓之间的位置关系(返回值为+1,-1,0)。

注意:如果你不需要知道具体距离,建议你将第三个参数设为 False,这样速度会提高 2 到 3 倍。

21.4.3 形状匹配

函数 cv2.matchShape() 可以帮我们比较两个形状或轮廓的相似度。如果返回值越小,匹配越好。它是根据 Hu 矩来计算的。文档中对不同的方法都有解释。
我们试着将下面的图形进行比较:

import cv2
import numpy as np img1 = cv2.imread('star.jpg',0)
img2 = cv2.imread('star2.jpg',0) ret, thresh = cv2.threshold(img1, 127, 255,0)
ret, thresh2 = cv2.threshold(img2, 127, 255,0)
contours,hierarchy = cv2.findContours(thresh,2,1)
cnt1 = contours[0]
contours,hierarchy = cv2.findContours(thresh2,2,1)
cnt2 = contours[0] ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
print ret

我得到的结果是:
  • A 与自己匹配 0.0
  • A 与 B 匹配 0.001946
  • A 与 C 匹配 0.326911

看见了吗,及时发生了旋转对匹配的结果影响也不是非常大。
注意:Hu 矩是归一化中心矩的线性组合,之所以这样做是为了能够获取代表图像的某个特征的矩函数,这些矩函数对某些变化如缩放,旋转,镜像映射(除了 h1)具有不变形。此段摘自《学习 OpenCV》中文版。

21.5 轮廓的层次结构

目标
  现在我们要学习轮廓的层次结构了,比如轮廓之间的父子关系。

原理
  在前面的内容中我们使用函数 cv2.findContours 来查找轮廓,我们需要传入一个参数:轮廓提取模式(Contour_Retrieval_Mode)。我们总是把它设置为 cv2.RETR_LIST 或者是 cv2.RETR_TREE,效果还可以。但是它们到底代表什么呢?
  同时,我们得到的结果包含 3 个数组,第一个图像,第二个是轮廓,第三个是层次结构。但是我们从来没有用过层次结构。层次结构是用来干嘛的呢?
  层次结构与轮廓提取模式有什么关系呢?
  这就是我们本节要讲的。

21.5.1 什么是层次结构

通常我们使用函数 cv2.findContours 在图片中查找一个对象。有时对象可能位于不同的位置。还有些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一幅图像中的所有轮廓之间就建立父子关系。这样我们就可以确定一个轮廓与其他轮廓是怎样连接的,比如它是不是某个轮廓的子轮廓,或者是父轮廓。这种关系就成为组织结构
下图就是一个简单的例子:


在这幅图像中,我给这几个形状编号为 0-5。2 和 2a 分别代表最外边矩形的外轮廓和内轮廓。
在这里边轮廓 0,1,2 在外部或最外边。我们可以称他们为(组织结构)0 级,简单来说就是他们属于同一级。

接下来轮廓 2a。我们把它当成轮廓 2 的子轮廓。它就成为(组织结构)第1 级。同样轮廓 3 是轮廓 2 的子轮廓,成为(组织结构)第 3 级。最后轮廓4,5 是轮廓 3a 的子轮廓,成为(组织结构)4 级(最后一级)。按照这种方式给这些形状编号,我们可以说轮廓 4 是轮廓 3a 的子轮廓(当然轮廓 5 也是)。
我说这么多就是为了解释层次结构,外轮廓,子轮廓,父轮廓,子轮廓等。
现在让我们进入 OpenCV 吧。

21.5.2 OpenCV 中层次结构

不管层次结构是什么样的,每一个轮廓都包含自己的信息:谁是父,谁是子等。OpenCV 使用一个含有四个元素的数组表示。[Next ,Previous ,First_Child ,Parent]。
Next 表示同一级组织结构中的下一个轮廓。
以上图中的轮廓 0 为例,轮廓 1 就是他的 Next。同样,轮廓 1 的 Next是 2,Next=2。
那轮廓 2 呢?在同一级没有 Next。这时 Next=-1。而轮廓 4 的 Next为 5,所以它的 Next=5。

Previous 表示同一级结构中的前一个轮廓。
与前面一样,轮廓 1 的 Previous 为轮廓 0,轮廓 2 的 Previous 为轮廓 1。轮廓 0 没有 Previous,所以 Previous=-1。

First_Child 表示它的第一个子轮廓。
没有必要再解释了,轮廓 2 的子轮廓为 2a。所以它的 First_Child 为2a。那轮廓 3a 呢?它有两个子轮廓。但是我们只要第一个子轮廓,所以是轮廓 4(按照从上往下,从左往右的顺序排序)。

Parent 表示它的父轮廓。
与 First_Child 刚好相反。轮廓 4 和 5 的父轮廓是轮廓 3a。而轮廓 3a的父轮廓是 3。

注意:如果没有父或子,就为 -1。
现在我们了解了 OpenCV 中的轮廓组织结构。我们还是根据上边的图片再学习一下 OpenCV 中的轮廓检索模式。
cv2.RETR_LIST,cv2.RETR_TREE,cv2.RETR_CCOMP,cv2.RETR_EXTERNAL到底代表什么意思?

21.5.3 轮廓检索模式

RETR_LIST

从解释的角度来看,这中应是最简单的。它只是提取所有的轮廓,而不去创建任何父子关系。换句话说就是“人人平等”,它们属于同一级组织轮廓。
所以在这种情况下,组织结构数组的第三和第四个数都是 -1。但是,很明显,Next 和 Previous 要有对应的值,你可以自己试着看看。
下面就是我得到的结果,每一行是对应轮廓的组织结构细节。例如,第一行对应的是轮廓 0。下一个轮廓为 1,所以 Next=1。前面没有其他轮廓,所以 Previous=0。接下来的两个参数就是 -1,与刚才我们说的一样。

>>> hierarchy
array([[[ 1, -1, -1, -1],
[ 2, 0, -1, -1],
[ 3, 1, -1, -1],
[ 4, 2, -1, -1],
[ 5, 3, -1, -1],
[ 6, 4, -1, -1],
[ 7, 5, -1, -1],
[-1, 6, -1, -1]]])

如果你不关心轮廓之间的关系,这是一个非常好的选择。

RETR_EXTERNAL

如果你选择这种模式的话,只会返回最外边的的轮廓,所有的子轮廓都会被忽略掉。
所以在上图中使用这种模式的话只会返回最外边的轮廓(第 0 级):轮廓0,1,2。下面是我选择这种模式得到的结果:

>>> hierarchy
array([[[ 1, -1, -1, -1],
[ 2, 0, -1, -1],
[-1, 1, -1, -1]]])

当你只想得到最外边的轮廓时,你可以选择这种模式。这在有些情况下很有用。

RETR_CCOMP

在这种模式下会返回所有的轮廓并将轮廓分为两级组织结构。例如,一个对象的外轮廓为第 1 级组织结构。而对象内部中空洞的轮廓为第 2 级组织结构,空洞中的任何对象的轮廓又是第 1 级组织结构。空洞的组织结构为第 2 级。
想象一下一副黑底白字的图像,图像中是数字 0。0 的外边界属于第一级组织结构,0 的内部属于第 2 级组织结构。
我们可以以下图为例简单介绍一下。我们已经用红色数字为这些轮廓编号,并用绿色数字代表它们的组织结构。顺序与 OpenCV 检测轮廓的顺序一直。

现在我们考虑轮廓 0,它的组织结构为第 1 级。其中有两个空洞 1 和 2,它们属于第 2 级组织结构。所以对于轮廓 0 来说跟他属于同一级组织结构的下一个(Next)是轮廓 3,并且没有 Previous。它的 Fist_Child 为轮廓 1,组织结构为 2。由于它是第 1 级,所以没有父轮廓。因此它的组织结构数组为[3,-1,1,-1]。
现在是轮廓 1,它是第 2 级。处于同一级的下一个轮廓为 2。没有 Previous,也没有 Child,(因为是第 2 级所以有父轮廓)父轮廓是 0。所以数组是[2,-1,-1,0]。
轮廓 2:它是第 2 级。在同一级的组织结构中没有 Next。Previous 为轮廓 1。没有子,父轮廓为 0,所以数组是 [-1,1,-1,0]
轮廓 3:它是第 1 级。在同一级的组织结构中 Next 为 5。Previous 为轮廓 0。子为 4,没有父轮廓,所以数组是 [5,0,4,-1]轮廓 4:它是第 2 级。在同一级的组织结构中没有 Next。没有 Previous,没有子,父轮廓为 3,所以数组是 [-1,-1,-1,3]

下面是我得到的答案:

>>> hierarchy
array([[[ 3, -1, 1, -1],
[ 2, -1, -1, 0],
[-1, 1, -1, 0],
[ 5, 0, 4, -1],
[-1, -1, -1, 3],
[ 7, 3, 6, -1],
[-1, -1, -1, 5],
[ 8, 5, -1, -1],
[-1, 7, -1, -1]]])

RETR_TREE

终于到最后一个了,也是最完美的一个。这种模式下会返回所有轮廓,并且创建一个完整的组织结构列表。它甚至会告诉你谁是爷爷,爸爸,儿子,孙子等。

还是以上图为例,使用这种模式,对 OpenCV 返回的结果重新排序并分析它,红色数字是边界的序号,绿色是组织结构。

轮廓 0 的组织结构为 0,同一级中 Next 为 7,没有 Previous。子轮廓是 1,没有父轮廓。所以数组是 [7,-1,1,-1]。
轮廓 1 的组织结构为 1,同一级中没有其他,没有 Previous。子轮廓是2,父轮廓为 0。所以数组是 [-1,-1,2,0]。
剩下的自己试试计算一下吧。

下面是结果:

>>> hierarchy
array([[[ 7, -1, 1, -1],
[-1, -1, 2, 0],
[-1, -1, 3, 1],
[-1, -1, 4, 2],
[-1, -1, 5, 3],
[ 6, -1, -1, 4],
[-1, 5, -1, 4],
[ 8, 0, -1, -1],
[-1, 7, -1, -1]]])

更多内容请关注公众号:

[OpenCV-Python] 21 OpenCV 中的轮廓的更多相关文章

  1. OpenCV学习笔记(12)——OpenCV中的轮廓

    什么是轮廓 找轮廓.绘制轮廓等 1.什么是轮廓 轮廓可看做将连续的点(连着边界)连在一起的曲线,具有相同的颜色和灰度.轮廓在形态分析和物体的检测和识别中很有用. 为了更加准确,要使用二值化图像.在寻找 ...

  2. Opencv中的轮廓(不全)

    1.初识轮廓 为了准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理,或者Canny边界检测. 查找轮廓的函数会修改原始图像.如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他 ...

  3. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python cv2 OpenCV 中传统图片格式与 base64 转换

    Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法.通过http传输图片常常将图片数据转换成base64之后再进行传输. Base64简 ...

  5. 用 Python 和 OpenCV 检测图片上的条形码

      用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问 ...

  6. 识别简单的答题卡(Bubble sheet multiple choice scanner and test grader using OMR, Python and OpenCV——jsxyhelu重新整编)

    该博客转自www.pyimagesearch.com,进行了相关修改补充. Over the past few months I've gotten quite the number of reque ...

  7. 用 Python 和 OpenCV 检测图片上的条形码(转载)

    原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 1 ...

  8. Python下opencv使用笔记(图像频域滤波与傅里叶变换)

    Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654  收藏 展开 本文转载自  https://blog ...

  9. 如何通过 Python 和 OpenCV 实现目标数量监控?

    今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障.当然不仅如此,我们看的是 ...

  10. opencv+python视频实时质心显示

    利用opencv+python实现以下功能: 1)获取实时视频,分解帧频: 2)将视频做二值化处理: 3) 将视频做滤波处理(去除噪点,获取准确轮廓个数): 4)识别图像轮廓: 5)计算质心: 6)描 ...

随机推荐

  1. install package within python

    import os os.system("pip install numpy") import subprocess subprocess.call(['pip3', 'insta ...

  2. VMware安装Rocky Linux8服务器系统并执行优化,包括修改安装镜像源、ssh免密等等

    1. https://blog.csdn.net/DCTANT/article/details/125430461?utm_medium=distribute.pc_relevant.none-tas ...

  3. app工程目录结构

    一.APP工程目录结构 APP工程分为两个层次,第一个层次是项目(这里在eclipse中是指workspace),另一个层次是模块(这里在eclipse中是指project) 模块依附于项目,每个项目 ...

  4. 实验九 团队作业6:团队项目编码与Alpha冲刺

    项目 内容 课程班级博客链接 2018级卓越班 这个作业要求链接 实验九-团队作业6 团队名称 零基础619 团队成员分工描述 任务1:荣娟,鑫任务2:亚楠,桂婷任务3:亚楠,桂婷任务4:荣娟,鑫任务 ...

  5. [转]C++回调函数

    回调函数 回调函数是一个时时听到的概念,比如在windows API编程时遇到的WinProc函数,就是我们编写而由操作系统调用的函数.现在,我们需要慢慢又详细的记录一下这个问题. 库与使用者的问题 ...

  6. 文件上传靶场 upload-labs搭建 Pass 1-4

    upload-labs是一个练习文件上传的靶场 我们需要先安装中间件和PHP,推荐使用小皮面板,如何安装使用见sqli-labs搭建前部分 upload-labs下载:https://gitcode. ...

  7. 【打怪升级】【rocketMq】rocket的持久化

    rocket持久化保证的思想有两点:1是刷盘保证大部分数据不丢失:2是持久化文件的处理,零拷贝技术和内存页,NIO模型保证处理能力 文件持久化目录 ├──abort:rocket broker启动检查 ...

  8. 非侵入式入侵 —— Web缓存污染与请求走私

    作者:vivo 互联网安全团队- Gui Mingcheng 本文介绍了两种攻击者无需直接接触服务端即可攻击和影响用户行为的安全漏洞 -- Web缓存污染与请求走私.Web缓存污染旨在通过攻击者向缓存 ...

  9. 使用Vue脚手架

    关于不同版本的Vue: vue.js与vue.runtime.xxx.js的区别: (1) vue.js是完整版的Vue,包含: 核心功能+模板解析器 (2) vue.runtime.xxx.js是运 ...

  10. Hello, YOU -- 通过简单的 hello_test.go 程序理解并学会编写测试

    Hello, YOU 书接上文上篇文章中,我们尝试编写了hello word 函数以及第一个测试 hello_test package main import "fmt" func ...