莫烦Python 4
莫烦Python 4
RNN Classifier 循环神经网络
问题描述
使用RNN对MNIST里面的图片进行分类
关键
SimpleRNN()参数
- batch_input_shape
使用状态RNN的注意事项
可以将RNN设置为‘stateful’,意味着由每个batch计算出的状态都会被重用于初始化下一个batch的初始状态。状态RNN假设连续的两个batch之中,相同下标的元素有一一映射关系。
要启用状态RNN,请在实例化层对象时指定参数stateful=True,并在Sequential模型使用固定大小的batch:通过在模型的第一层传入batch_size=(…)和input_shape来实现。在函数式模型中,对所有的输入都要指定相同的batch_size。
如果要将循环层的状态重置,请调用.reset_states(),对模型调用将重置模型中所有状态RNN的状态。对单个层调用则只重置该层的状态。
(samples,timesteps,input_dim)
代码
'''
RNN Classifier 循环神经网络
'''
import numpy as np
np.random.seed(1337)
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import SimpleRNN, Activation, Dense
from keras.optimizers import Adam
time_step = 28
input_size = 28
batch_size = 50
output_size = 10
cell_size = 50
LR = 0.001
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 28, 28) / 255. # normalize
X_test = X_test.reshape(-1, 28, 28) / 255. # normalize
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
model = Sequential()
model.add(
SimpleRNN(
batch_input_shape=(None, time_step, input_size),
units=cell_size
)
)
model.add(
Dense(output_size)
)
model.add(Activation('softmax'))
adam = Adam(LR)
model.compile(
optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy']
)
model.summary()
model.fit(X_train, y_train, batch_size=batch_size, epochs=2, verbose=2, validation_data=(X_test, y_test))
结果
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
simple_rnn_2 (SimpleRNN) (None, 50) 3950
_________________________________________________________________
dense_2 (Dense) (None, 10) 510
_________________________________________________________________
activation_2 (Activation) (None, 10) 0
=================================================================
Total params: 4,460
Trainable params: 4,460
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
Epoch 1/2
- 12s - loss: 0.6643 - accuracy: 0.7966 - val_loss: 0.4501 - val_accuracy: 0.8550
Epoch 2/2
- 9s - loss: 0.3220 - accuracy: 0.9087 - val_loss: 0.2445 - val_accuracy: 0.9359
莫烦Python 4的更多相关文章
- 莫烦python教程学习笔记——保存模型、加载模型的两种方法
# View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://ww ...
- 莫烦python教程学习笔记——validation_curve用于调参
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——learn_curve曲线用于过拟合问题
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——利用交叉验证计算模型得分、选择模型参数
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——数据预处理之normalization
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——线性回归模型的属性
#调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...
- 莫烦python教程学习笔记——使用波士顿数据集、生成用于回归的数据集
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——使用鸢尾花数据集
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python课程里面的bug修复;课程爬虫小练习爬百度百科
我今天弄了一下午修改这个代码,最后还是弄好了.原因是正则表达式的筛选不够准确,有时候是会带http:baidu这些东西的.所以需要一个正则表达式的断言,然后还有一点是如果his里面只有一个元素就不要再 ...
- Tensorflow 教程系列 | 莫烦Python
Tensorflow 简介 1.1 科普: 人工神经网络 VS 生物神经网络 1.2 什么是神经网络 (Neural Network) 1.3 神经网络 梯度下降 1.4 科普: 神经网络的黑盒不黑 ...
随机推荐
- React Refs-知识点整理记录
一.Refs的作用 通过Refs,可以访问到 1. DOM节点. 2. render方法中创建的React元素.(class组件的实例) 二.访问节点或者实例有什么用?为什么要使用Refs来访问? 访 ...
- Pytest插件之pytest-base-url切换测试环境
Pytest插件之pytest-base-url切换测试环境 安装 pip install pytest-base-url 应用场景 利用参数--base-url或者配置(pytest.ini中ba ...
- 一次代码重构 JavaScript 图连通性判定
简介 说重构其实就是整理了代码,第一次自己手写写的很丑,然后看了书上写的,虽然和书上的思路不同但是整理后几乎一样漂亮 效果 整体代码如下 class Node { AdjNodes = new Set ...
- 不像JVM的JVM
1.面向对象 面向对象的思想:将功能封装到对象中,通过对象去实现 面向对象的目的:将复杂的事情简单化,将以前过程中的执行者变成了指挥者且符合现在人们的思考习惯 面向对象的三大特征: 封装:将对象的实现 ...
- SQLSERVER 临时表和表变量到底有什么区别?
一:背景 1. 讲故事 今天和大家聊一套面试中经常被问到的高频题,对,就是 临时表 和 表变量 这俩玩意,如果有朋友在面试中回答的不好,可以尝试看下这篇能不能帮你成功迈过. 二:到底有什么区别 1. ...
- 2021级《JAVA语言程序设计》上机考试试题6
首先管理员页面 代码: <%@ page language="java" contentType="text/html; charset=UTF-8" p ...
- 安装redhat6.10 出现的问题
安装redhat6.10 操作系统不定时重启情况说明 曾出现报错如下: 在UEFI模式下安装RHEL6.10,安装完毕后系统第一次重启无法进入操作系统,同时屏幕上出现错误提示: Invalid m ...
- JavaScript的闭包和作用域
作用域相关 作用域的概念: 作用域是在运行时代码中的某些特定部分中变量,函数和对象的可访问性.换句话说,作用域决定了代码区块中变量和其他资源的可见性: 作用域的类型: 全局作用域: 最外层函数和在最外 ...
- Iceberg 数据治理及查询加速实践
数据治理 Flink 实时写入 Iceberg 带来的问题 在实时数据源源不断经过 Flink 写入的 Iceberg 的过程中,Flink 通过定时的 Checkpoint 提交 snapshot ...
- 403. 青蛙过河 (Hard)
问题描述 403. 青蛙过河 (Hard) 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子,但是不可以跳入水中. 给你石 ...