0x01 前置芝士

树形结构?贪心?思维?眼睛?

好有趣。。。 link

0x02

题目大意:给你一颗有 \(n\) 个节点的树,你需要尽可能多的删掉边,使得剩下的图中有 \(k\) 个点满足互相能走到。求最后剩下的边数。

我们深度剖析出题人其实是想考树形 \(dp\) 的,可是呢,这其实就是道一眼题。

首先,我们剩下的图最优情况一定是只剩 \(k\) 个点。

对于答案,最优的情况其实就是 \(k\) 个点分成 \(\lfloor \frac k 2 \rfloor\) 堆,使得每一堆只有两个点或有一堆有三个点。这也是最理想的情况,但显然一些树无法满足。不过你会发现,这个理想情况最后剩的边为 \(\lceil \frac k 2 \rceil\)。

于是我们考虑原树可以拆分成多少个多少堆,使得每一堆的点数不大于 \(2\),记能拆分出的个数为 \(cnt\)。

如果 \(cnt >= \lfloor \frac k 2 \rfloor\),也就是说这棵树可以拆分出这么多堆,那么答案就是 \(\lceil \frac k 2 \rceil\)。

而如果 \(cnt < \lfloor \frac k 2 \rfloor\),也就是说这棵树是不支持最优解的,那么我们就运用一下贪心。首先我们需要剩余 \(k\) 个点,而因为我们原树只能拆出 \(cnt\) 堆,所以说这 \(k\) 个点中,一定有 \(cnt \times 2\) 个点可以成为理想情况。那么我们就考虑剩下 \(k - cnt \times 2\) 个点怎么办。其实我也不知道怎么办,但我知道这些点一定能通过一条边和已经处于理想情况的一堆连接起来,那么累加边即可。此时答案为 \(k - cnt \times 2 + cnt\),即 \(k - cnt\)。

把这两种情况综合一下就会得到答案:\(k - \min(\lfloor \frac k 2 \rfloor, cnt)\)。

关于 \(cnt\) 的求法,我们可以直接遍历这棵树。

对于节点 \(u\),它的子节点 \(v\),如果所有的 \(v\) 被取用过,我们就不取,并把 \(u\) 设为未被取用;如果有一个 \(v\) 没有被取用,我们就取没被取用的第一个 \(v\) 并把 \(u\) 设为被取用。可以结合代码分析。

0x03 code

#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std; typedef long long LL;
int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
} void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(int x, char s) {
write(x);
putchar(s);
} int Min(int x, int y) { return x < y ? x : y; } const int MAXN = 1e5 + 5;
int son[MAXN], dp[MAXN];
vector<int> mp[MAXN]; void Add_Edge(int u, int v) {
mp[u].push_back(v);
mp[v].push_back(u);
} int cnt = 0;
bool Tree_Dp(int u, int fa) {
bool f = 1;
for (int i = 0; i < mp[u].size(); i++) {
int v = mp[u][i];
if (v == fa)
continue;
int t = Tree_Dp(v, u);
if (f && t) {
f = 0;
cnt++;
}
}
return f;
} int main() {
int T = read();
while (T--) {
int n = read(), k = read();
for (int i = 1; i <= n; i++) mp[i].clear();
for (int i = 1; i < n; i++) {
int u = read(), v = i + 1;
Add_Edge(u, v);
}
for (int i = 1; i <= n; i++) son[i] = mp[i].size();
cnt = 0;
Tree_Dp(1, 0);
print(k - Min(cnt, k >> 1), '\n');
}
return 0;
}

Solution -「Local 11145」诗意狗的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  3. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  4. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  5. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  6. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  7. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  8. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  9. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

随机推荐

  1. keepalived安装及配置文件详解

    一个执着于技术的公众号 在上一篇文章中,我们对Keepalived进行了简单入门学习: Keepalived入门学习 今天我们继续学习Keepalived服务. 一.安装Keepalived服务 两种 ...

  2. Apache ShenYu:分析、实现一个 Node.js 语言的 HTTP 服务注册客户端(HTTP Registry)

    这块没空写文章了,先贴出实现代码吧 yuque.com/myesn

  3. 好客租房25-react中的事件处理(事件对象)

    3.2事件对象 可以通过事件处理程序的参数 React中的事件对象叫做:合成事件(对象) 合成事件:兼容所有浏览器 //导入react     import React from 'react'   ...

  4. VB.net使用Microsoft.Office.Interop.Excel对Excel进行简单的读取和写入

    环境:Visual Stadio 2017  .NET Framework 4.6.1 1.直接进入正题,新建一个控制台程序,右键引用-管理Nuget程序包,搜索Microsoft.Office.In ...

  5. 微信小程序避坑指南——echarts层级太高/层级遮挡

    问题:小程序中echarts因为小程序原生的canvas层级太高,而导致弹窗这类dom元素无法遮挡住canvas,如下图: 解决方案1:(wx:if控制dom显隐,显示canvas就重新渲染echar ...

  6. 【雅礼集训 2017 Day2】棋盘游戏

    loj 6033 description 给一个\(n*m\)的棋盘,'.'为可通行,'#'为障碍.Alice选择一个起始点,Bob先手从该点往四个方向走一步,Alice再走,不能走走过的点,谁不能动 ...

  7. LC T668笔记 & 有关二分查找、第K小数、BFPRT算法

    LC T668笔记 [涉及知识:二分查找.第K小数.BFPRT算法] [以下内容仅为本人在做题学习中的所感所想,本人水平有限目前尚处学习阶段,如有错误及不妥之处还请各位大佬指正,请谅解,谢谢!] !! ...

  8. HTML 继承属性

    一.无继承性的属性 1.display:规定元素应该生成的框的类型 2.文本属性: vertical-align:垂直文本对齐 text-decoration:规定添加到文本的装饰 text-shad ...

  9. 接口测试postman深度挖掘应用①

    一.测试接口前需要搞明白的原理: 1.在讲如何使用postman时,我们首先应该要了解网络的请求相应的知识,下面以fiddle进行抓包为例分析: 通过fiddler抓包我们不难发现,客户端也就是用户会 ...

  10. (持续更新)虚树,KD-Tree,长链剖分,后缀数组,后缀自动机

    真的就是讲课两天,吸收一个月呢! \(1.\)虚树 \(2.\)KD-Tree \(3.\)长链剖分 \(4.\)后缀数组 后缀数组 \(5.\)后缀自动机 后缀自动机