摘要:高斯Redis 搭建业务二级索引,低成本,高性能,实现性能与成本的双赢。

本文分享自华为云社区《华为云GaussDB(for Redis)揭秘第21期:使用高斯Redis实现二级索引》,作者:高斯Redis官方博客。

一、背景

提起索引,第一印象就是数据库的名词,但是,高斯Redis也可以实现二级索引!!!高斯Redis中的二级索引一般利用zset来实现。高斯Redis相比开源Redis有着更高的稳定性、以及成本优势,使用高斯Redis zset实现业务二级索引,可以获得性能与成本的双赢。

索引的本质就是利用有序结构来加速查询,因而通过Zset结构高斯Redis可以轻松实现数值类型以及字符类型索引。

• 数值类型索引(zset按分数排序):

• 字符类型索引(分数相同时zset按字典序排序):

下面让我们切入两类经典业务场景,看看如何使用高斯Redis来构建稳定可靠的二级索引系统。

二、场景一:词典补全

当在浏览器中键入查询时,浏览器通常会按照可能性推荐相同前缀的搜索,这种场景可以用高斯Redis二级索引功能实现。

2.1 基本方案

最简单的方法是将用户的每个查询添加到索引中。当需要进行用户输入补全推荐时,使用ZRANGEBYLEX执行范围查询即可。如果不希望返回太多条目,高斯Redis还支持使用LIMIT选项来减少结果数量。

• 将用户搜索banana添加进索引:

ZADD myindex 0 banana:1

• 假设用户在搜索表单中输入“bit”,并且我们想提供可能以“bit”开头的搜索关键字。

ZRANGEBYLEX myindex "[bit" "[bit\xff"

即使用ZRANGEBYLEX进行范围查询,查询的区间为用户现在输入的字符串,以及相同的字符串加上一个尾随字节255(\xff)。通过这种方式,我们可以获得以用户键入字符串为前缀的所有字符串。

2.2 与频率相关的词典补全

实际应用中通常希望按照出现频率自动排序补全词条,同时可以清除不再流行的词条,并自动适应未来的输入。我们依然可以使用高斯Redis的ZSet结构实现这一目标,只是在索引结构中,不仅需要存储搜索词,还需要存储与之关联的频率。

• 将用户搜索banana添加进索引

• 判断banana是否存在

ZRANGEBYLEX myindex "[banana:" + LIMIT 0 1

• 假设banana不存在,添加banana:1,其中1是频率

ZADD myindex 0 banana:1

• 假设banana存在,需要递增频率

若ZRANGEBYLEX myindex "[banana:" + LIMIT 0 1 中返回的频率为1

1)删除旧条目:

ZREM myindex 0 banana:1

2)频率加一重新加入:

ZADD myindex 0 banana:2

请注意,由于可能存在并发更新,因此应通过Lua脚本发送上述三个命令,用Lua script自动获得旧计数并增加分数后重新添加条目。

• 假设用户在搜索表单中输入“banana”,并且我们想提供相似的搜索关键字。通过ZRANGEBYLEX获得结果后按频率排序。

ZRANGEBYLEX myindex "[banana:" + LIMIT 0 10

1) "banana:123"
2) "banaooo:1"
3) "banned user:49"
4) "banning:89"

• 使用流算法清除不常用输入。从返回的条目中随机选择一个条目,将其分数减1,然后将其与新分数重新添加。但是,如果新分数为0,我们需从列表中删除该条目。

• 若随机挑选的条目频率是1,如banaooo:1

ZREM myindex 0 banaooo:1

• 若随机挑选的条目频率大于1,如banana:123

ZREM myindex 0 banana:123
ZADD myindex 0 banana:122

从长远来看,该索引会包含热门搜索,如果热门搜索随时间变化,它还会自动适应。

三、场景二:多维索引

除了单一维度上的查询,高斯Redis同样支持在多维数据中的检索。例如,检索所有年龄在50至55岁之间,同时薪水在70000至85000之间的人。实现多维二级索引的关键是通过编码将二维的数据转化为一维数据,再基于高斯Redis zset存储。

从可视化视角表示二维索引。下图空间中有一些点,它们代表我们的数据样本,其中x和y是两个变量,其最大值均为400。图片中的蓝色框代表我们的查询。我们希望查询x介于50和100之间,y介于100和300之间的所有点。

3.1 数据编码

若插入数据点为x = 75和y = 200

1) 填充0(数据最大为400,故填充3位)

x = 075

y = 200

2) 交织数字,以x表示最左边的数字,以y表示最左边的数字,依此类推,以便创建一个编码

027050

若使用00和99替换最后两位,即027000 to 027099,map回x和y,即:

x = 70-79

y = 200-209

因此,针对x=70-79和y = 200-209的二维查询,可以通过编码map成027000 to 027099的一维查询,这可以通过高斯Redis的Zset结构轻松实现。

同理,我们可以针对后四/六/etc位数字进行相同操作,从而获得更大范围。

3) 使用二进制

为获得更细的粒度,可以将数据用二进制表示,这样在替换数字时,每次会得到比原来大二倍的搜索范围。假设我们每个变量仅需要9位(以表示最多400个值的数字),我们采用二进制形式的数字将是:

x = 75 -> 001001011

y = 200 -> 011001000

交织后,000111000011001010

让我们看看在交错表示中用0s ad 1s替换最后的2、4、6、8,...位时我们的范围是什么:

3.2 添加新元素

若插入数据点为x = 75和y = 200

x = 75和y = 200二进制交织编码后为000111000011001010,

ZADD myindex 0 000111000011001010

3.3 查询

查询:x介于50和100之间,y介于100和300之间的所有点

从索引中替换N位会给我们边长为2^(N/2)的搜索框。因此,我们要做的是检查搜索框较小的尺寸,并检查与该数字最接近的2的幂,并不断切分剩余空间,随后用ZRANGEBYLEX进行搜索。

下面是示例代码:

def spacequery(x0,y0,x1,y1,exp)
bits=exp*2
x_start = x0/(2**exp)
x_end = x1/(2**exp)
y_start = y0/(2**exp)
y_end = y1/(2**exp)
(x_start..x_end).each{|x|
(y_start..y_end).each{|y|
x_range_start = x*(2**exp)
x_range_end = x_range_start | ((2**exp)-1)
y_range_start = y*(2**exp)
y_range_end = y_range_start | ((2**exp)-1)
puts "#{x},#{y} x from #{x_range_start} to #{x_range_end}, y from #{y_range_start} to #{y_range_end}" # Turn it into interleaved form for ZRANGEBYLEX query.
# We assume we need 9 bits for each integer, so the final
# interleaved representation will be 18 bits.
xbin = x_range_start.to_s(2).rjust(9,'0')
ybin = y_range_start.to_s(2).rjust(9,'0')
s = xbin.split("").zip(ybin.split("")).flatten.compact.join("")
# Now that we have the start of the range, calculate the end
# by replacing the specified number of bits from 0 to 1.
e = s[0..-(bits+1)]+("1"*bits)
puts "ZRANGEBYLEX myindex [#{s} [#{e}"
}
}
end spacequery(50,100,100,300,6)

四、总结

本文介绍了如何通过高斯Redis搭建二级索引,二级索引在电商、图(hexastore)、游戏等领域具有广泛的应用场景,高斯redis现网亦有很多类似应用。高斯Redis基于存算分离架构,依托分布式存储池确保数据强一致,可方便的支持二级索引功能,为企业客户提供稳定可靠、超高并发,且能够极速弹性扩容的核心数据存储服务。

附录

  • 本文作者:华为云数据库GaussDB(for Redis)团队
  • 杭州/西安/深圳简历投递:yuwenlong4@huawei.com
  • 更多产品信息,欢迎访问官方博客:bbs.huaweicloud.com/blogs/248875

点击关注,第一时间了解华为云新鲜技术~

使用高斯Redis实现二级索引的更多相关文章

  1. HBase二级索引方案总结

    转自:http://blog.sina.com.cn/s/blog_4a1f59bf01018apd.html 附hbase如何创建二级索引以及创建二级索引实例:http://www.aboutyun ...

  2. 使用ElasticSearch赋能HBase二级索引 | 实践一年后总结

    前言:还记得那是2018年的一个夏天,天气特别热,我一边擦汗一边听领导大刀阔斧的讲述自己未来的改革蓝图.会议开完了,核心思想就是:我们要搞一个数据大池子,要把公司能灌的数据都灌入这个大池子,然后让别人 ...

  3. hbase构建二级索引解决方案

    关注公众号:大数据技术派,回复"资料",领取1024G资料. 1 为什么需要二级索引 HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索.假设我们相对Hbas ...

  4. HBase学习(四) 二级索引 rowkey设计

    HBase学习(四) 一.HBase的读写流程 画出架构 1.1 HBase读流程 Hbase读取数据的流程:1)是由客户端发起读取数据的请求,首先会与zookeeper建立连接2)从zookeepe ...

  5. MySQL 优化之 MRR (Multi-Range Read:二级索引合并回表)

    MySQL5.6中引入了MRR,专门来优化:二级索引的范围扫描并且需要回表的情况.它的原理是,将多个需要回表的二级索引根据主键进行排序,然后一起回表,将原来的回表时进行的随机IO,转变成顺序IO.文档 ...

  6. 基于Solr实现HBase的二级索引

    文章来源:http://www.open-open.com/lib/view/open1421501717312.html 实现目的: 由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想 ...

  7. HBase的二级索引,以及phoenix的安装(需再做一次)

    一:HBase的二级索引 1.讲解 uid+ts 11111_20161126111111:查询某一uid的某一个时间段内的数据 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+ ...

  8. mysql的二级索引

    mysql中每个表都有一个聚簇索引(clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅助索引(secondary indexes). 以InnoDB来说,每个Inn ...

  9. 使用redis缓存加索引处理数据库百万级并发

    使用redis缓存加索引处理数据库百万级并发 前言:事先说明:在实际应用中这种做法设计需要各位读者自己设计,本文只提供一种思想.准备工作:安装后本地数redis服务器,使用mysql数据库,事先插入1 ...

随机推荐

  1. Firefox 国外换为国内同步的服务器地址

    地址栏键入 about:config点击 接受风险并同意查找 identity把右侧字符串包含 firefox.com 替换为 firefox.com.cn 即换为国内同步服务器反之把 firefox ...

  2. CoAP调试工具 Mozi.IoT.CoAP

    前言 CoAP是一种类HTTP协议的物联网专用协议,其数据包为人类不可阅读的字节流形式,在开发相关应用的时候往往不能准确的了解数据包的内容.故需要专用的调试工具对数据和通讯进行调试. CoAP协议介绍 ...

  3. html_学习所有标签使用

    <!DOCTYPE html><!--声明为HTML5文档--><html lang="en"><head><!-- 页面表头 ...

  4. asp.net core MVC 添加静态文件

    ASP.net Core 中添加插件需要 1.将文件放在wwwroot文件夹下(根目录文件夹,没有的话需要创建) 2.需要在project.json中的dependencies添加如下依赖 " ...

  5. 基础知识:CERT内部威胁定义以及四大原因

    我们从CERT的内部威胁定义中,可以分析.提取出内部威胁的关键特征,而这些特征也是内部威胁与外部威胁区别的最主要因素.通常来说,内部威胁具有以下特征: 1.透明性:攻击者来自安全边界内部,因此攻击者可 ...

  6. 基于SqlSugar的数据库访问处理的封装,在.net6框架的Web API上开发应用

    我前面几篇随笔介绍了关于几篇关于SqlSugar的基础封装,已经可以直接应用在Winform项目开发上,并且基础接口也通过了单元测试,同时测试通过了一些Winform功能页面:本篇随笔继续深化应用开发 ...

  7. 深入了解tomcat中servlet的创建方式实现

    Tomcat如何创建Servlet? A.先到缓存中寻找有没有这个对象(Servlet是单实例的,只会创建一次) 如果没有: 1.通过反射去创建相应的对象(执行构造方法) 2.tomcat会把对象存放 ...

  8. Json序列化与反序列化导致多线程运行速度和单线程运行速度一致问题

    紧跟上篇文章 十个进程开启十个bash后一致写入命令执行完毕之后产生了很多很多的文件,博主需要对这些文件同意处理,也就是说对几十万个文件进行处理,想了又想,单线程处理那么多数据肯定不行,于是乎想到了使 ...

  9. http缓存策略以及强缓存和协商缓存浅析

    http缓存策略以及强缓存和协商缓存浅析 本地缓存-强缓存 本地缓存,也就是我们常说的强缓存:是指当浏览器请求资源时,如果请求服务端的资源命中了浏览器本地的缓存资源,那么浏览器就不会发送真正请求给服务 ...

  10. 跨域问题及其解决方法(JSONP&CORS)

    一.什么是跨域 当a.qq.com域名下的页⾯或脚本试图去请求b.qq.com域名下的资源时,就是典型的跨域行为.跨域的定义从受限范围可以分为两种,⼴义跨域和狭义跨域. (一)广义跨域 ⼴义跨域通常包 ...